
DIFFERENTIALLY EXPRESSED CIRCULATING LONG-NONCODING RNAS IN PREMATURE INFANTS WITH RESPIRATORY DISTRESS SYNDROME Bao ZD, Wan J, Zhu W, Shen JX, Yang Y, Zhou XY *Corresponding Author: Dr. Yang Yang and Dr. Zhou Xiao‑Yu, E‑mail: yy860507@126.com (YY) and xyzhou161@163.com (XYZ), Tel:+ 86-25-83117362, Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China page: 11
|
REFERENCES
1. Kumar A, Bhat BV. Epidemiology of respiratory distress
of newborns. Indian J Pediatr. 1996; 63 (1): 93-98.
2. Villar J, Zhang H, Slutsky AS. Lung Repair and
Regeneration in ARDS: Role of PECAM1 and Wnt
Signaling. Chest. 2019;155(3):587-594.
3. Makanya A, Anagnostopoulou A, Djonov V. Development
and remodeling of the vertebrate blood-gas
barrier. Biomed Res Int. 2013. 2013: 101597.
4. Choe J, Lin S, Zhang W, Liu Q, Wang L, Ramirez-
Moya J, et al. mRNA circularization by METTL3-eIF3h
enhances translation and promotes oncogenesis.
Nature. 2018. 561(7724): 556-560.
5. Herriges MJ, Tischfield DJ, Cui Z, Morley MP, Han Y,
Babu A, et al. The NANCI-Nkx2.1 gene duplex buffers
Nkx2.1 expression to maintain lung development
and homeostasis. Genes Dev. 2017; 31(9):889-903.
6. Shen JX, Bao ZD, Zhu W, Ma CL, Shen YQ, Kan Q,
et al. Expression profiles of long non-coding RNAs
during fetal lung development. Exp Ther Med. 2020;
20(6):144.
7. Herriges MJ, Swarr DT, Morley MP, Rathi KS,
Peng T, Stewart KM, et al. Long noncoding RNAs
are spatially correlated with transcription factors
and regulate lung development. Genes Dev. 2014;
28(12):1363-79.
8. Hu Y, Wang J, Zhou Y, Xie H, Yan X, Chu X, et al.
Peptidomics analysis of umbilical cord blood reveals
potential preclinical biomarkers for neonatal respiratory
distress syndrome. Life Sci. 2019; 236:116737.
9. Zhou H, Chanda B, Chen YF, Wang XJ, You MY,
Zhang YH, Cheng R, Yang Y, Chen XQ. Microarray
and Bioinformatics Analysis of Circular RNA Differential
Expression in Newborns With Acute Respiratory
Distress Syndrome. Front Pediatr. 2021 Nov
2;9:728462.
10. [Expert consensus on the diagnosis and management
of neonatal sepsis (version 2019)]. Zhonghua Er Ke
Za Zhi. 2019; 57(4):252-257. In Chinese
11. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek
E, Te PA, et al. European Consensus Guidelines on
the Management of Respiratory Distress Syndrome
- 2019 Update. Neonatology. 2019;115(4):432-450.
12. Perri A, Riccardi R, Iannotta R, Di Molfetta DV,
Arena R, Vento G, et al. Lung ultrasonography score
versus chest X-ray score to predict surfactant administration
in newborns with respiratory distress
syndrome. Pediatr Pulmonol. 2018; 53(9):1231-1236.
13. Galvanin A, Dostert G, Ayadi L, Marchand V, Velot
E, Motorin Y. Diversity and heterogeneity of extracellular
RNA in human plasma. Biochimie. 2019;
164:22-36.
14. Wang X, Guo S, Zhou X, Wang Y, Zhang T, Chen
R. Exploring the Molecular Mechanism of lncRNAmiRNA-
mRNA Networks in Non-Syndromic Cleft
Lip with or without Cleft Palate. Int J Gen Med. 2021
Dec 16;14:9931-9943.
15. Livak KJ, Schmittgen TD. Analysis of relative gene
expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 2001;
25(4):402-8.
16. Gopel W, Kribs A, Ziegler A, Laux R, Hoehn T, Wieg
C, et al. Avoidance of mechanical ventilation by surfactant
treatment of spontaneously breathing preterm
infants (AMV): an open-label, randomised, controlled
trial. Lancet. 2011; 378(9803):1627-34.
17. Burri PH. Fetal and postnatal development of the
lung. Annu Rev Physiol. 1984; 46: 617-628.
18. Li Z, Huang C, Yang B, Hu W, Chan MT, Wu W.
Emerging roles of long non-coding RNAs in osteonecrosis
of the femoral head. Am J Transl Res. 2020;
12(9):5984-5991.
19. Mahlapuu M, Enerback S, Carlsson P. Haploinsufficiency
of the forkhead gene Foxf1, a target for sonic
hedgehog signaling, causes lung and foregut malformations.
Development. 2001; 128(12):2397-406.
20. Szafranski P, Dharmadhikari AV, Brosens E, Gurha
P, Kolodziejska KE, Zhishuo O, et al. Small noncoding
differentially methylated copy-number variants,
including lncRNA genes, cause a lethal lung developmental
disorder. Genome Res. 2013; 23(1):23-33.
21. Zhang H, Zou X, Liu F. Silencing TTTY15 mitigates
hypoxia-induced mitochondrial energy metabolism
dysfunction and cardiomyocytes apoptosis via
TTTY15/let-7i-5p and TLR3/NF-kappaB pathways.
Cell Signal. 2020; 76:109779.
22. Johnson SM, Grosshans H, Shingara J, Byrom M,
Jarvis R, Cheng A, et al. RAS is regulated by the
let-7 microRNA family. Cell. 2005; 120(5):635-47.
23. Fabro AT, Machado-Rugolo J, Baldavira CM, Prieto
TG, Farhat C, Rotea MF, et al. Circulating Plasma
miRNA and Clinical/Hemodynamic Characteristics
Provide Additional Predictive Information About
Acute Pulmonary Thromboembolism, Chronic
Thromboembolic Pulmonary Hypertension and Idiopathic
Pulmonary Hypertension. Front Pharmacol.
2021; 12:648769.
24. Willems CH, Zimmermann LJ, Kloosterboer N, Kramer
BW, van Iwaarden JF. Surfactant protein A binds
TGF-beta1 with high affinity and stimulates the TGFbeta
pathway. Innate Immun. 2014; 20(2):192-199.
25. Shen YQ, Bao ZD, Pan JJ, Mao XN, Cheng R, Zhou
XG, et al. MicroRNA‑431 inhibits the expression of
surfactant proteins through the BMP4/activin/TGF‑β
signaling pathway by targeting SMAD4. Int J Mol
Med. 2020;45(5):1571-1582.
26. Cho HJ, Baek KE, Saika S, Jeong MJ, Yoo J. Snail is
required for transforming growth factor-beta-induced
epithelial-mesenchymal transition by activating PI3
kinase/Akt signal pathway. Biochem Biophys Res
Commun. 2007; 353(2):337-343.
27. Jolly MK, Ward C, Eapen MS, Myers S, Hallgren O,
Levine H, et al. Epithelial-mesenchymal transition, a
spectrum of states: Role in lung development, homeostasis,
and disease. Dev Dyn. 2018; 247(3):346-358.
28. Zhao M, Li C, Shen F, Wang M, Jia N, Wang C.
Naringenin ameliorates LPS-induced acute lung injury
through its anti-oxidative and anti-inflammatory
activity and by inhibition of the PI3K/AKT pathway.
Exp Ther Med. 2017;14(3):2228-2234.
29. Chen Y, Wu J, Yan H, Cheng Y, Wang Y, Yang Y, et al.
Lymecycline reverses acquired EGFR-TKI resistance
in non-small-cell lung cancer by targeting GRB2.
Pharmacol Res. 2020; 159:105007.
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|