DIFFERENTIALLY EXPRESSED CIRCULATING LONG-NONCODING RNAS IN PREMATURE INFANTS WITH RESPIRATORY DISTRESS SYNDROME
Bao ZD, Wan J, Zhu W, Shen JX, Yang Y, Zhou XY
*Corresponding Author: Dr. Yang Yang and Dr. Zhou Xiao‑Yu, E‑mail: yy860507@126.com (YY) and xyzhou161@163.com (XYZ), Tel:+ 86-25-83117362, Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
page: 11
download article in pdf format

Abstract

Purpose: Recent studies have addressed the association between lung development and long-noncoding RNAs (lncRNAs). But few studies have investigated the role of lncRNAs in neonatal respiratory distress syndrome (RDS). Thus, this study aimed to compare the expression profile of circulating lncRNAs between RDS infants and controls. Methods: 10 RDS infants and 5 controls were enrolled. RDS patients were further divided into mild and severe RDS subgroups. Blood samples were collected for the lncRNA expression profile. Subsequently, differentially expressed lncRNAs were screened out. Bioinformatics analysis was applied to establish a co-expression network of differential lncRNAs and mRNAs, and predict the underlying biological functions. Results: A total of 135 differentially expressed lncRNAs were identified, including 108 upregulated and 27 downregulated lncRNAs (fold-change>2 and P<0.05) among the three groups (non-RDS, mild RDS and severe RDS groups). Of these lncRNAs, four were selected as showing higher fold changes and validated by qRT-PCR. ENST00000470527.1, ENST00000504497.1, ENST00000417781.5, and ENST00000440408.5 were increased not only in the plasma of total RDS patients but also in the severe RDS subgroup. Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses showed that differentially expressed lncRNAs may play important roles in RDS through regulating PI3KAkt, RAS, MAPK, and TGF-β signaling pathways. Conclusion: The present results found that ENST00000470527.1, ENST00000504497.1, ENST00000417781.5, and ENST00000440408.5 may be involved in RDS. This could provide new insight into research of the potential pathophysiological mechanisms of preterm RDS.



Number 27
VOL. 27 (2), 2024
Number 27
VOL. 27 (1), 2024
Number 26
Number 26 VOL. 26(2), 2023 All in one
Number 26
VOL. 26(2), 2023
Number 26
VOL. 26, 2023 Supplement
Number 26
VOL. 26(1), 2023
Number 25
VOL. 25(2), 2022
Number 25
VOL. 25 (1), 2022
Number 24
VOL. 24(2), 2021
Number 24
VOL. 24(1), 2021
Number 23
VOL. 23(2), 2020
Number 22
VOL. 22(2), 2019
Number 22
VOL. 22(1), 2019
Number 22
VOL. 22, 2019 Supplement
Number 21
VOL. 21(2), 2018
Number 21
VOL. 21 (1), 2018
Number 21
VOL. 21, 2018 Supplement
Number 20
VOL. 20 (2), 2017
Number 20
VOL. 20 (1), 2017
Number 19
VOL. 19 (2), 2016
Number 19
VOL. 19 (1), 2016
Number 18
VOL. 18 (2), 2015
Number 18
VOL. 18 (1), 2015
Number 17
VOL. 17 (2), 2014
Number 17
VOL. 17 (1), 2014
Number 16
VOL. 16 (2), 2013
Number 16
VOL. 16 (1), 2013
Number 15
VOL. 15 (2), 2012
Number 15
VOL. 15, 2012 Supplement
Number 15
Vol. 15 (1), 2012
Number 14
14 - Vol. 14 (2), 2011
Number 14
The 9th Balkan Congress of Medical Genetics
Number 14
14 - Vol. 14 (1), 2011
Number 13
Vol. 13 (2), 2010
Number 13
Vol.13 (1), 2010
Number 12
Vol.12 (2), 2009
Number 12
Vol.12 (1), 2009
Number 11
Vol.11 (2),2008
Number 11
Vol.11 (1),2008
Number 10
Vol.10 (2), 2007
Number 10
10 (1),2007
Number 9
1&2, 2006
Number 9
3&4, 2006
Number 8
1&2, 2005
Number 8
3&4, 2004
Number 7
1&2, 2004
Number 6
3&4, 2003
Number 6
1&2, 2003
Number 5
3&4, 2002
Number 5
1&2, 2002
Number 4
Vol.3 (4), 2000
Number 4
Vol.2 (4), 1999
Number 4
Vol.1 (4), 1998
Number 4
3&4, 2001
Number 4
1&2, 2001
Number 3
Vol.3 (3), 2000
Number 3
Vol.2 (3), 1999
Number 3
Vol.1 (3), 1998
Number 2
Vol.3(2), 2000
Number 2
Vol.1 (2), 1998
Number 2
Vol.2 (2), 1999
Number 1
Vol.3 (1), 2000
Number 1
Vol.2 (1), 1999
Number 1
Vol.1 (1), 1998

 

 


 About the journal ::: Editorial ::: Subscription ::: Information for authors ::: Contact
 Copyright © Balkan Journal of Medical Genetics 2006