
MIR-147B REGULATED PROLIFERATION
AND APOPTOSIS OF GASTRIC CANCER CELLS
BY TARGETING CPEB2 VIA THE PTEN PATHWAY Tao K.1,2, Dong J-H.2, Wang D.1, Li F.2†#, Zhang Z-T.#1* *Corresponding Author: Zhong-Tao Zhang, MD, Email: sxzhangzhongtao@sina.com, ORCID ID: 0000-0002-1184-2591
#: Zhong-Tao Zhang and Feng Li contributed equally to the article
†: Co-corresponding author: Feng Li, Email: sxlifengwobuxin@sina.com, ORCID: 0000-0002-7322-422X page: 10
|
REFERENCES
1. Li J, Ye D, Shen P, et al. Mir-20a-5p induced WTX deficiency
promotes gastric cancer progressions through
regulating PI3K/AKT signaling pathway. J Exp Clin
Cancer Res. 2020; 39(1). doi: 10.1186/s13046-020-
01718-4
2. Necula L, Matei L, Dragu D, et al. Recent advances
in gastric cancer early diagnosis. World J Gastroenterol.
2019; 25(17): 2029-2044. doi: 10.3748/wjg.
v25.i17.2029
3. Yang W, Raufi A, Klempner SJ. Targeted therapy for
gastric cancer: Molecular pathways and ongoing investigations.
Biochim Biophys Acta - Rev Cancer. 2014;
1846(1): 232-237. doi: 10.1016/j.bbcan.2014.05.003
4. Wu H, Liu B, Chen Z, Li G, Zhang Z. MSC-induced
lncRNA HCP5 drove fatty acid oxidation through
miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote
stemness and chemo-resistance of gastric
cancer. Cell Death Dis. 2020; 11(4). doi: 10.1038/
s41419-020-2426-z
5. Huang S, Guo Y, Li Z, et al. A systematic review of
metabolomic profiling of gastric cancer and esophageal
cancer. Cancer Biol Med. 2020; 17(1): 181-198.
doi:10.20892/j.issn.2095-3941.2019.0348
6. Zhong BZ, Wang Q, Liu F, He JL, Xiong Y, Cao J.
Effects of miR-384 and miR-134-5p acting on YY1
signaling transduction on biological function of gastric
cancer cells. Onco Targets Ther. 2020; 13: 9631-
9641. doi: 10.2147/OTT.S259988
7. Kipkeeva F, Muzaffarova T, Korotaeva A, et al.
MicroRNA in gastric cancer development: Mechanisms
and biomarkers. Diagnostics. 2020; 10(11).
doi: 10.3390/diagnostics10110891
8. Shen J, Niu W, Zhang H, Jun M, Zhang H. Downregulation
of MicroRNA-147 inhibits cell proliferation
and increases the chemosensitivity of gastric cancer
cells to 5-Fluorouracil by directly targeting PTEN.
Oncol Res. 2018; 26(6): 901-911. doi: 10.3727/096
504017X15061902533715
9. Ning X, Wang C, Zhang M, Wang K. Ectopic expression
of miR-147 inhibits stem cell marker and
epithelial–mesenchymal transition (EMT)-related
protein expression in colon cancer cells. Oncol Res.
2019; 27(4): 399-406. doi: 10.3727/096504018X15
179675206495
10. Calin GA, Sevignani C, Dumitru CD, et al. Human
microRNA genes are frequently located at fragile
sites and genomic regions involved in cancers. Proc
Natl Acad Sci U S A. 2004; 101(9): 2999-3004. doi:
10.1073/pnas.0307323101
11. Garzon R, Fabbri M, Cimmino A, Calin GA, Croce
CM. MicroRNA expression and function in cancer.
Trends Mol Med. 2006; 12(12): 580-587. doi:
10.1016/j.molmed.2006.10.006
12. Fuziwara CS, Kimura ET. MicroRNAs in thyroid
development, function and tumorigenesis. Mol
Cell Endocrinol. 2017; 456: 44-50. doi: 10.1016/j.
mce.2016.12.017
13. Lima CR, Gomes CC, Santos MF. Role of microRNAs
in endocrine cancer metastasis. Mol Cell Endocrinol.
2017; 456: 62-75. doi: 10.1016/j.mce.2017.03.015
14. Forte S, La Rosa C, Pecce V, Rosignolo F, Memeo
L. The role of MicroRNAs in thyroid carcinomas.
Anticancer Res. 2015; 35(4): 2037-2048.
15. Hu Y, Wang H, Chen E, Xu Z, Chen B, Lu G. Candidate
microRNAs as biomarkers of thyroid carcinoma:
a systematic review, meta-analysis, and experimental
validation. Cancer Med. 2016; 5(9): 2602-2614. doi:
10.1002/cam4.811
16. Kleemann M, Bereuther J, Fischer S, et al. Investigation
on tissue specific effects of pro-apoptotic micro
RNAs revealed miR-147b as a potential biomarker in
ovarian cancer prognosis. Oncotarget. 2017; 8(12):
18773-18791. doi: 10.18632/oncotarget.13095
17. Zhang E, Liu Q, Wang Y, et al. MicroRNA miR-147b
promotes tumor growth via targeting UBE2N in hepatocellular
carcinoma. Oncotarget. 2017; 8(69):
114072-114080. doi: 10.18632/oncotarget.23120
18. Cui S, Yang X, Zhang L, Zhao Y, Yan W. LncRNA
MAFG-AS1 promotes the progression of colorectal
cancer by sponging miR-147b and activation of
NDUFA4. Biochem Biophys Res Commun. 2018;
506(1): 251-258. doi:10.1016/j.bbrc.2018.10.112
19. Gaedcke J, Grade M, Camps J, et al. The rectal cancer
microRNAome - MicroRNA expression in rectal
cancer and matched normal mucosa. Clin Cancer Res.
2012; 18(18): 4919-4930. doi: 10.1158/1078-0432.
CCR-12-0016
20. Yi L, Zhong X, Chen Z, et al. MicroRNA-147b Promotes
Proliferation and Invasion of Human Colorectal
Cancer by Targeting RAS Oncogene Family
(RAP2B). Pathobiology. 2019; 86(4): 173-181. doi:
10.1159/000495253
21. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-
21 targets tumor suppressor genes in invasion
and metastasis. Cell Res. 2008; 18(3): 350-359.
doi: 10.1038/cr.2008.24
22. Ji Z, Ju YL, Pan Z, Jiang B, Tian B. Progressive
lengthening of 3′ untranslated regions of mRNAs
by alternative polyadenylation during mouse embryonic
development. Proc Natl Acad Sci U S A. 2009;
106(23): 9535. doi: 10.1073/pnas.0904454106
23. Morgan M, Iaconcig A, Muro AF. CPEB2, CPEB3
and CPEB4 are coordinately regulated by miRNAs
recognizing conserved binding sites in paralog positions
of their 3′-UTRs. Nucleic Acids Res. 2010;
38(21):7698-7710. doi:10.1093/nar/gkq635
24. Theis M, Si K, Kandel ER. Two previously undescribed
members of the mouse CPEB family of
genes and their inducible expression in the principal
cell layers of the hippocampus. Proc Natl Acad
Sci U S A. 2003; 100(16):9602-9607. doi:10.1073/
pnas.1133424100
|
|
|
|



 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|