PPARγ GENE AND ATHEROSCLEROSIS: GENETIC POLYMORPHISMS, EPIGENETICS AND THERAPEUTIC IMPLICATIONS
Grbić E, Peterlin A, Kunej T, Petrovič D
*Corresponding Author: Professor Daniel Petrovič, M.D., Ph.D., Institute of Histology and Embryology, Faculty of Medicine University Ljubljana, Vrazov trg 2, Ljubljana 1000, Slovenia. Tel: +386-1-5437-360. Fax: +386-1-5437-361. E-mail: Daniel.petrovic@mf.uni-lj.si
page: 39

REFERENCES

1. Cai J-M, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid ath-erosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002; 106(11): 1368-1373. 2. Atherosclerosis. National Heart, Lung, and Blood Institute (NHLBI). Department of Health and Human Services, Bethseda, MD, USA, 2018 (https://www. nhlbi.nih. gov/health-topics/atherosclrerosis). 3. Roy S. Atherosclerotic cardiovascular disease risk and evidence-based management of cholesterol. N Am J Med Sci. 2014; 6(5): 191-198. 4. Hong YM. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ J. 2010; 40(1): 1-9. 5. Ammirati E, Moroni F, Norata GD, Magnoni M, Camici PG. Markers of inflammation associated with plaque progression and instability in patients with carotid atherosclerosis. Mediators Inflamm. 2015; 2015: 18329. 6. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011; 473(7347): 317-325 7. Ross R. Atherosclerosis – An inflammatory disease. N Engl J Med. 1999; 340(2): 115-126. 8. Kruszynska YT, Mukherjee R, Jow L, Dana S, Paterniti JR, Olefsky JM. Skeletal muscle peroxisome proliferator-activated receptor-γ expression in obesity and non-insulin-dependent diabetes mellitus. J Clin Invest. 1998; 101(3): 543-548. 9. Desvergne B, Wahli W. Peroxisome proliferatoractivated receptors: Nuclear control of metabolism. Endocr Rev. 1999; 20(5): 649-688. 10. Hong C, Tontonoz P. Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev. 2008; 18(5): 461-467. 11. Li AC, Glass CK. PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res. 2004; 45(12): 2161-2173. 12. Yongsakulchai P, Settasatian C, Settasatian N, Komanasin N, Kukongwiriyapan U, Cote ML, et al. Association of combined genetic variations in PPARγ, PGC-1α, and LXRα with coronary artery disease and severity in Thai population. Atherosclerosis. 2016; 248: 140-148. 13. Al-Shali KZ, House AA, Hanley AJGG, Khan HMRR, Harris SB, Zinman B, et al. Genetic variation in PPARG encoding peroxisome proliferator-activated receptor γ associated with carotid atherosclerosis. Stroke. 2004; 35(9): 2036-2040. 14. Wang L, Zhao L, Cui H, Yan M, Yang L, Su X. Association between PPARγ2 Pro12Ala polymorphism and myocardial infarction and obesity in Han Chinese in Hohhot, China. Genet Mol Res Mol Res. 2012; 11(113): 2929-2938. 15. Flavell DM, Jamshidi Y, Hawe E, Pineda Torra I, Taskinen M-R, Frick MH, et al. Peroxisome proliferator- activated receptor α gene variants influence progression of coronary atherosclerosis and risk of coronary artery disease. Circulation. 2002; 105(12): 1440-1445. 16. Li Y, Zhu J, Ding J. Association of the PPARγ2 Pro- 12Ala polymorphism with increased risk of cardiovascular diseases. Genet Mol Res. 2015; 14(144): 18662-18674. 17. Yan ZC, Zhu ZM, Shen CY, Zhao ZG, Ni YX, Zhong J, et al. Peroxisome proliferator-activated receptor γ C-161T polymorphism and carotid artery atherosclerosis in metabolic syndrome. Zhonghua Yi Xue Za Zhi. 2004; 84(7): 543-547. 18. Wang P, Wang Q, Yin Y, Yang Z, Li W, Liang D, et al. Association between peroxisome proliferator-activated receptor γ gene polymorphisms and atherosclerotic diseases: A meta-analysis of case-control studies. J Atheroscler Thromb. 2015; 22(9): 912-925. 19. Rhee EJ, Kwon CH, Lee WY, Kim SY, Jung CH, Kim BJ, et al. No Association of Pro12Ala polymorphism of PPAR-γ gene with coronary artery disease in Korean subjects. Circ J. 2007; 71(3): 338-342. 20. Wan J, Xiong S, Chao S, Xiao J, Ma Y, Wang J, et al. PPARγ gene C161T substitution alters lipid profile in Chinese patients with coronary artery disease and type 2 diabetes mellitus. Cardiovasc Diabetol. 2010; 9(1): 13. 21. Matouk CC, Marsden PA. Epigenetic regulation of vascular endothelial gene expression. Circ Res. 2008; 102(8): 873-887. 22. Yu J, Qiu Y, Yang J, Bian S, Chen G, Deng M, et al. DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice. Sci Rep. 2016; 6(1): 30053. 23. Miranda TB, Jones PA. DNA methylation: The nuts and bolts of repression. J Cell Physiol. 2007; 213(2): 384-390. 24. Hiltunen MO, Turunen MP, Häkkinen TP, Rutanen J, Hedman M, Mäkinen K, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med. 2002; 7(1): 5-11. 25. Reddy MA, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res. 2011; 90(3): 421-429. 26. Laukkanen MO, Mannermaa S, Hiltunen MO, Aittomäki, Jänne J, Ylä-Herttuala S, et al. Gene ec-sod local hypomethylation in atherosclerosis found in rabbit. Arter Thromb Vasc Biol. 1999; 19(9): 2171- 2178. 27. Lund G, Andersson L, Lauria M, Lindholm M, Fraga FM, Villar-Garea A, et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem. 2004; 279(28): 29147-29154. 28. Kouzarides T. Chromatin modifications and their function. Cell. 2007; 128(4): 693-705. 29. Clayton AL, Hazzalin CA, Mahadevan LC. Review enhanced histone acetylation and transcription: A dynamic perspective. Mol Cell. 2006; 23(4): 289-296. 30. Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008; 28(5): 812-819. 31. Chawla A, Boisvert WA, Lee C-H, Laffitte BA, Barak Y, Joseph SB, et al. A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell. 2001; 7(1): 161-171. 32. Cao Q, Rong S, Repa JJ, St. Clair R, Parks JS, Mishra N. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb Vasc Biol. 2014; 34(9): 1871-1879. 33. Cao Y, Lu L, Liu M, Li X-C, Sun R-R, Zheng Y, et al. Impact of epigenetics in the management of cardiovascular disease: A review. Eur Rev Med Pharmacol Sci. 2014; 18(20): 3097-3104. 34. Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 2014; 9(1): 3-12. 35. Toba H, Cortez D, Lindsey ML, Chilton RJ. Applications of miRNA technology for atherosclerosis. Curr Atheroscler Rep. 2014; 16(2): 386. 36. Zhao R, Feng J, He G. miR-613 Regulates cholesterol efflux by targeting LXRα and ABCA1 in PPARγ activated THP-1 macrophages. Biochem Biophys Res Commun. 2014; 448(3): 329-334. 37. Raitoharju E, Lyytikäinen L-P, Levula M, Oksala N, Mennander A, Tarkka M, et al. miR-21, miR-210, miR-34a, And miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011; 219(1): 211-217. 38. Ma L, Yang J, Runesha HB, Tanaka T, Ferrucci L, Bandinelli S, et al. Genome-wide association analysis of total cholesterol and high-density lipoprotein cholesterol levels using the Framingham heart study data. BMC Med Genet. 2010; 11(1): 55. 39. Caolo V, Schulten HM, Zhuang ZW, Murakami M, Wagenaar A, Verbruggen S, et al. Soluble jagged-1 inhibits neointima formation by attenuating notchherp2 signaling. Arterioscler Thromb Vasc Biol. 2011; 31(5): 1059-1065. 40. Cipollone F, Felicioni L, Sarzani R, Ucchino S, Spigonardo F, Mandolini C, et al. A unique microRNA signature associated with plaque instability in humans. Stroke. 2011; 42(9): 2556-2563. 41. Gupta D, Jetton TL, Mortensen RM, Duan SZ, Peshavaria M, Leahy JL. In vivo and in vitro studies of a functional peroxisome proliferator-activated receptor γ response element in the mouse pdx-1 promoter. J Biol Chem. 2008; 283(47): 32462-32470. 42. Blaschke F, Caglayan E. Peroxisome proliferatoractivated receptor γ agonists: Their role as vasoprotective agents in diabetes. Endocrinol Metab Clin North Am. 2006; 35(3): 561-574. 43. Minamikawa J, Tanaka S, Yamauchi M, Inoue D, Koshiyama H. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab. 1998; 83(5): 1818-1820. 44. Takagi T, Yamamuro A, Tamita K, Yamabe K, Katayama M, Mizoguchi S, et al. Pioglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with type 2 diabetes mellitus: An intra-vascular ultrasound scanning study. Am Heart J. 2003; 146(2): 366. 45. Ruiz-Narváez EA, Kraft P, Campos H. Ala12 variant of the peroxisome proliferator-activated receptor-γ gene (PPARG) is associated with higher polyunsaturated fat in adipose tissue and attenuates the protective effect of polyunsaturated fat intake on the risk of myocardial infarction. Am J Clin Nutr. 2007; (86): 1238-1242. 46. Li J, Zhang S. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2. Biochem Biophys Res Commun. 2016; 476(4): 218-224. 47. Chinetti G, Zawadski C, Fruchart J, Staels B. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARα, PPARγ, and LXR. Biochem Biophys Res Commun. 2004; 314(1): 151-158.



Number 26
Number 26 VOL. 26(2), 2023 All in one
Number 26
VOL. 26(2), 2023
Number 26
VOL. 26, 2023 Supplement
Number 26
VOL. 26(1), 2023
Number 25
VOL. 25(2), 2022
Number 25
VOL. 25 (1), 2022
Number 24
VOL. 24(2), 2021
Number 24
VOL. 24(1), 2021
Number 23
VOL. 23(2), 2020
Number 22
VOL. 22(2), 2019
Number 22
VOL. 22(1), 2019
Number 22
VOL. 22, 2019 Supplement
Number 21
VOL. 21(2), 2018
Number 21
VOL. 21 (1), 2018
Number 21
VOL. 21, 2018 Supplement
Number 20
VOL. 20 (2), 2017
Number 20
VOL. 20 (1), 2017
Number 19
VOL. 19 (2), 2016
Number 19
VOL. 19 (1), 2016
Number 18
VOL. 18 (2), 2015
Number 18
VOL. 18 (1), 2015
Number 17
VOL. 17 (2), 2014
Number 17
VOL. 17 (1), 2014
Number 16
VOL. 16 (2), 2013
Number 16
VOL. 16 (1), 2013
Number 15
VOL. 15 (2), 2012
Number 15
VOL. 15, 2012 Supplement
Number 15
Vol. 15 (1), 2012
Number 14
14 - Vol. 14 (2), 2011
Number 14
The 9th Balkan Congress of Medical Genetics
Number 14
14 - Vol. 14 (1), 2011
Number 13
Vol. 13 (2), 2010
Number 13
Vol.13 (1), 2010
Number 12
Vol.12 (2), 2009
Number 12
Vol.12 (1), 2009
Number 11
Vol.11 (2),2008
Number 11
Vol.11 (1),2008
Number 10
Vol.10 (2), 2007
Number 10
10 (1),2007
Number 9
1&2, 2006
Number 9
3&4, 2006
Number 8
1&2, 2005
Number 8
3&4, 2004
Number 7
1&2, 2004
Number 6
3&4, 2003
Number 6
1&2, 2003
Number 5
3&4, 2002
Number 5
1&2, 2002
Number 4
Vol.3 (4), 2000
Number 4
Vol.2 (4), 1999
Number 4
Vol.1 (4), 1998
Number 4
3&4, 2001
Number 4
1&2, 2001
Number 3
Vol.3 (3), 2000
Number 3
Vol.2 (3), 1999
Number 3
Vol.1 (3), 1998
Number 2
Vol.3(2), 2000
Number 2
Vol.1 (2), 1998
Number 2
Vol.2 (2), 1999
Number 1
Vol.3 (1), 2000
Number 1
Vol.2 (1), 1999
Number 1
Vol.1 (1), 1998

 

 


 About the journal ::: Editorial ::: Subscription ::: Information for authors ::: Contact
 Copyright © Balkan Journal of Medical Genetics 2006