
UNUSUAL PATTERN OF BONE MARROW SOMATIC
MUTATION IN PEDIATRIC PATIENTS REFERRED
FOR CYTOGENETIC ANALYSIS
Grant SG1,*, McLoughlin RK2, Wenger SL3 *Corresponding Author: Stephen G. Grant, Ph.D., Department of Environmental and Occupational Health, University of Pittsburgh, 3343 Forbes Avenue, Pittsburgh, PA 15260, USA; Tel.: +412-383-2093; Fax: +412-383-2123; E-mail: sgg@pitt.edu page: 45
|
INTRODUCTION
Less than half of the newborn and early childhood referrals for cytogenetic analysis have a chromosomal abnormality as an explanation for their phenotype. Some of the rest can be explained by gene-specific effects or can be attributed to teratogenic exposure during development, but about half are of unknown etiology. A number of hereditary diseases, usually associated with a high incidence of cancer or premature aging, are characterized by inherent genomic instability at the chromosomal level, at the base pair (bp) level, or both. We wished to determine whether such genetic instability, manifested as spontaneous hypermutability, might be found in a population of pediatric patients referred for cytogenetic analysis who had no chromosomal abnormalities.
The glycophorin A (GPA) somatic mutation assay is based on loss of expression of one allele of a heterozygous pair at the autosomal locus determining the human MN blood group [1]. It has been used extensively to detect and quantify the effects of genotoxic exposure in humans [2,3], including exposures in utero [4,5] and in childhood [6-9]. It has also been used to demonstrate high levels of spontaneous hypermutability in several hereditary diseases associated with deficiency of DNA repair, including ataxia telangiectasia (AT) [10,11], Fanconi’s anemia (FA) [12], Bloom’s syndrome (BS) [13,14] and Werner’s syndrome (WS) [15,16]. We have recently shown that the high spontaneous mutation frequencies (Mf) revealed by the GPA assay are diagnostic for AT and FA [17,18].
|
|
|
|



 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|
|