
CHRONIC OBSTRUCTIVE PULMONARY DISEASE RISK
AND SMOKING CESSATION CHANGES INDUCED
BY CHRNA5-A3 AND CHRNB3-A6 VARIATION
IN A CHINESE MALE POPULATION Zhao L1,, Zou L-Y2,, Cheng B-F3, Yu X-J4, Zou J-H5,*, Han W6,* *Corresponding Author: Dr. Wei Han, Department of Pulmonary Medicine, Qingdao Municipal Hospital,
Qingdao University, No. 5 Donghai Mid Road, Qingdao, People’s Republic of China. Tel: +86-185-
6185-7838. E-mail: sallyhan1@163.com. And: Dr. Jian-Hong Zou, Center of Diseases Control of Qingdao
Shi-Bei District, No. 3 Deping Road, Qingdao, People’s Republic of China. Tel: +86-185-6185-7599.
E-mail: 277517366@qq.com
-Long Zhao, Ling-Yan Zou contributed equally to this study. page: 51
|
REFERENCES
1. Mathers CD, Loncar D. Projections of global mortality
and burden of disease from 2002 to 2030. PLoS
Med. 2006; 3(11): 2011-2030.
2. Ding Y, Yang D, Chen W, Chen P, Xie P, Yang H, et
al. Smoking and multigenetic index on the risk of
chronic obstructive pulmonary disease in the Chinese
Li population: A case-control study. Int J Clin Exp
Pathol. 2016; 9(4): 4397-4407.
3. Uhl GR, Liu Q-R, Drgon T, Johnson C, Walther D,
Rose JE, et al. (See above) Molecular genetics of
successful smoking cessation: convergent genomewide
association study results. Arch Gen Psychiatry.
2008; 65(6): 683-693.
4. Leventhal AM, Lee W, Bergen AW, Bergen AW, Swan
GE, Tyndale RF, et al. (See above) Nicotine dependence
as a moderator of genetic influences on smoking
cessation treatment outcome. Drug Alcohol Depend.
2014; 138(1): 109-117.
5. Sieminska A, Jassem E, Kita-Milczarska K. Nicotine
dependence in an isolated population of Kashubians
from North Poland: a population survey. BMC Public
Health. 2015; 15(1): 80.
6. Thorgeirsson TE, Geller F, Sulem P, Rafnar T Wiste
A, Magnusson KP, et al. A variant associated with
nicotine dependence, lung cancer and peripheral arterial
disease. Nature. 2008; 452(7187): 638-642.
7. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe
M, Zaridze D, et al. A susceptibility locus for lung
cancer maps to nicotinic acetylcholine receptor subunit
genes on 15q25. Nature. 2008; 452(7187): 633-
637. 8. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen
T, et al. Genome-wide association scan of tag SNPs
identifies a susceptibility locus for lung cancer at
15q25.1. Nat Genet. 2008; 40(5): 616-622.
9. Saccone SF, Hinrichs AL, Saccone NL, Chase GA,
Konvicka K, Madden PAF, et al. Cholinergic nicotinic
receptor genes implicated in a nicotine dependence
association study targeting 348 candidate genes with
3713 SNPs. Hum Mol Genet. 2007; 16(1): 36-49.
10. Zeiger JS, Haberstick BC, Schlaepfer I, Collins AC,
Corley RP, Crowley TJ, et al. The neuronal nicotinic
receptor subunit genes (CHRNA6 and CHRNB3) are
associated with subjective responses to tobacco. Hum
Mol Genet. 2008; 17(5): 724-734.
11. Wu C, Hu Z, Yu D, Huang L, Jin G, Liang J, et al.
Genetic variants on chromosome 15q25 associated
with lung cancer risk in Chinese populations. Cancer
Res. 2009; 69(12): 5065-5072.
12. Niu X, Chen Z, Shen S, Liu Y, Zhou D, Zhang J,
et al. Association of the CHRNA3 locus with lung
cancer risk and prognosis in Chinese Han population.
J Thorac Oncol. 2010; 5(5): 658-666.
13. Wang B, Zhou H, Yang J, Xiao J, Liang B, Li D, et al.
Association of HHIP polymorphisms with COPD and
COPD-related phenotypes in a Chinese Han population.
Gene. 2013; 531(1): 101-105.
14. Kita-Milczarska K, Sieminska A, Jassem E. Association
between CHRNA3 and CHRNA5 nicotine receptor
subunit gene variants and nicotine dependence in
an isolated population of Kashubians in Poland. Med
Sci Monit. 2016; 22: 1442-1450.
15. Wen L, Han H, Liu Q, Su K, Yang Z, Cui W, et al.
Significant association of the CHRNB3-CHRNA6
gene cluster with nicotine dependence in the Chinese
Han population. Sci Rep. 2017; 7(1): 1-10.
16. Papi A, Casoni G, Caramori G, Guzzinati I, Boschetto
P, Ravenna F, et al. COPD increases the risk of squamous
histological subtype in smokers who develop
non-small cell lung carcinoma. Thorax. 2004; 59(8):
679-681.
17. Takiguchi Y, Sekine I, Iwasawa S, Kurimoto R, Tatsumi
K. Chronic obstructive pulmonary disease as a
risk factor for lung cancer. World J Clin Oncol. 2014;
5(4): 660-666.
18. Sekine Y, Yamada Y, Chiyo M, Iwata T, Nakajima T,
Yasufuku K, et al. Association of chronic obstructive
pulmonary disease and tumor recurrence in patients
with stage IA lung cancer after complete resection.
Ann Thorac Surg. 2007; 84(3): 946-950.
19. Lee JY, Yoo SS, Kang H-G, Jin G, Bae EY, Choi YY,
et al. A functional polymorphism in the CHRNA3
gene and risk of chronic obstructive pulmonary disease
in a Korean population. J Korean Med Sci. 2012;
27(12): 1536-1540.
20. Budulac SE, Vonk JM, Postma DS, Siedlinski M,
Timens W, Boezen MH. Nicotinic acetylcholine receptor
variants are related to smoking habits, but not
directly to COPD. PLoS One. 2012; 7(3): 1-7.
21. Jiménez-Ruiz CA, Andreas S, Lewis KE, Tonnesen P,
van Schayck CP, Hajek P, et al. Statement on smoking
cessation in COPD and other pulmonary diseases and
in smokers with comorbidities who find it difficult to
quit. Eur Respir J. 2015; 46(1): 61-79.
22. Breitling LP, Dahmen N, Mittelstrass K, Illig T,
Rujescu D, Raum E, et al. Smoking cessation and
variations in nicotinic acetylcholine receptor subunits
alpha-5, alpha-3, and beta-4 genes. Biol Psychiatry.
2009; 65(8): 691-695.
23. Liu T, David SP, Tyndale RF, Wang H, Zhou Q, Ding
P, et al. Associations of CYP2A6 genotype with
smoking behaviors in southern China. Addiction.
2011; 106(5): 985-994.
24. Pérez-Rubio G, López-Flores LA, García-Carmona S,
García-Gómez L, Noé-Díaz V, Ambrocio-Ortiz E, et
al. Genetic variants as risk factors for cigarette smoking
at an early age and relapse to smoking cessation
treatment: A pilot study. Gene. 2019; 694:93-96. doi:
10.1016/j.gene. 2019.01.036.
25. Japuntich SJ, Leventhal AM, Piper ME, Bolt DM,
Roberts LJ, Fiore MC, et al. Smoker characteristics
and smoking-cessation milestones. Am J Prev Med.
2011; 40(3): 286-294.
26. Gold AB, Lerman C. Pharmacogenetics of smoking
cessation: Role of nicotine target and metabolism
genes. Hum Genet. 2012. doi: 10.1007/s00439-012-
1143-9 [Epub ahead of print].
27. Zuo L, Garcia-Milian R, Guo X, Zhong C, Tan Y,
Wang Z, et al. Replicated risk nicotinic cholinergic
receptor genes for nicotine dependence. Genes (Basel).
2016; 7(11). doi: 10.3390/genes7110095.
28. Wang Q, Li S, Pan L, Li H, Yang X, Jiang F, et al. Association
between variants in nicotinic acetylcholine
receptor genes and smoking cessation in a Chinese
rural population. Am J Addict. 2016; 25(4): 297-300.
29. Bergen AW, Javitz HS, Krasnow R, Nishita D, Michel
M, Conti DV, et al. Nicotinic acetylcholine receptor
variation and response to smoking cessation therapies.
Pharmacogenet Genomics. 2013; 23(2): 94-103. 30. Tyndale RF, Zhu AZX, George TP, Paul C, Hawk
LW, Schnoll RA, et al. Lack of associations of CHRNA5-
A3-B4 genetic variants with smoking cessation
treatment outcomes in Caucasian smokers despite
associations with baseline smoking. PLoS One. 2015;
10(5): e0128109.
31. Freathy RM, Ring SM, Shields B, Galobardes B,
Knight B, Weedon MN, et al. A common genetic variant
in the 15q24 nicotinic acetylcholine receptor gene
cluster (CHRNA5-CHRNA3-CHRNB4) is associated
with a reduced ability of women to quit smoking in
pregnancy. Hum Mol Genet. 2009; 18(15): 2922-
2927.
32. Chen L-S, Baker TB, Piper ME, Breslau N, Cannon
DS, Doheny KF, et al. Interplay of genetic risk factors
(CHRNA5-CHRNA-3-CHRNAB4) and cessation
treatments in smoking cessation success. Am J
Psychiatry. 2012; 169(7): 735-742.
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|