
INCREASE OF DMPK AND DECREASE OF DMAHP
GENE EXPRESSION IN MUSCLE AND BLOOD OF
MYOTONIC DYSTROPHY PATIENTS COMPARED
TO NORMAL SUBJECTS
Chronopoulou P1, Yapijakis C1, Karadimas C1, Panas M1,
Manta P1, Cariolou M2, Vassilopoulos D1
*Corresponding Author: Christos Yapijakis, D.M.D., M.S., Ph.D., Clinical and Molecular Neurogenetics Unit, Department of Neurology, University of Athens Medical School, Eginition Hospital, Athens 11528, Greece; Tel: +30-10-728-9125; Fax: +30-1-881-1243; E-mail: cyapijakis_ua_gr.yahoo.com
page: 29
|
INTRODUCTION
Myotonic dystrophy (DM) is an autosomal dominant disorder, characterized mainly by myotonia and progressive muscle weakness, although central nervous system, cardiovascular and ocular manifestations also occur frequently [1]. The disease results from expansions of an unstable (CTG)n repeat, located in the 3' untranslated region (3'UTR) of the DM protein kinase (DMPK) gene on chromosome 19q13.3 [2,3]. Although the DM mutation was identified a decade ago, the pathogenic mechanisms underlying this neuromuscular disease remain elusive. Previous expression studies of the DMPK gene show contradictory results, indicating both increase and decrease of mRNA levels in DM patients compared to normal controls [4-11]. This may be due to different experimental approaches. On the other hand, there is in vitro evidence that supports a nucleosome stabilization effect of the elongated trinucleotide repeat [12-15]. In turn, this may affect the expression of a number of genes, such as the 3' flanking DM adjacent homeobox protein (DMAHP) gene, which is expressed in myoblasts, muscle, brain, testes and other tissues often affected in DM patients [16].
In order to simultaneously monitor the effect of the (CTG)n expansion on transcription of the DMPK and DMAHP genes, we performed quantitative expression studies of both genes [using reverse transcription-polymerase chain reaction (RT-PCR)] in muscle biopsies and blood samples of DM patients and control subjects.
|
|
|
|



 |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|
|