
PHENOTYPIC VARIABILITY OF COWDEN SYNDROME WITHIN A SINGLE FAMILY: IMPACT ON DIAGNOSIS, MANAGEMENT AND GENETIC COUNSELLING Ilic N1, Mitrovic N2, Radeta R3, Krasić S4,5, Vukomanović V4,5, Samardzija G2, Vasic M6, Vlahovic A5,6, Sarajlija A1,5 *Corresponding Author: *Corresponding Author: Ass. Prof. Dr. Adrijan Sarajlija MD, PhD, Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute “Dr Vukan Čupić”, Radoja Dakića 6-8, 11070 Novi Beograd, Serbia; University of Belgrade, Faculty of Medicine, Belgrade, Serbia; e-mail: adrijans2004@yahoo.com page: 95
|
INTRODUCTION
Cowden syndrome (CS), also known as PTEN ham-
artoma tumor syndrome (PHTS), is a rare autosomal domi-
nant disorder caused by germline mutations in the PTEN
gene located on chromosome 10q23.3 (1). The PTEN gene
encodes a tumor suppressor protein that plays a critical
role in maintaining genomic stability, regulating cell pro-
liferation, and facilitating apoptosis (2). Loss-of-function
mutations in PTEN disrupt these processes, leading to
the unregulated growth of cells and the development of
hamartomas and malignancies across multiple tissues (3).
The PTEN gene negatively regulates the PI3K/AKT signal-
ling pathway, essential for cell growth and metabolism.
Germline PTEN mutations are heterogeneous, including
nonsense, missense, and splice-site variants, with over
300 mutations described (4). These mutations cause vari-
able expressivity and incomplete penetrance, even among
family members (5). De novo mutations are identified in
10–20% of cases (1). CS is part of the PTEN hamartoma
tumor spectrum (PHTS), which includes Bannayan-Riley-
Ruvalcaba syndrome (BRRS) and Lhermitte-Duclos dis-
ease (5). The clinical manifestations of CS are diverse,
involving hamartomas in the skin, thyroid, gastrointestinal
tract, and other tissues (1). Genotype-phenotype correla-tions in PTEN disorders show significant variability caused
by mutations and phenotypic interactions (4,5).
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|