
VALUE OF OPTICAL GENOME MAPPING (OGM) FOR DIAGNOSTICS OF RARE DISEASES: A FAMILY CASE REPORT Kovanda A1,2, Miljanović O3, Lovrečić L1,2, Maver A1,2, Hodžić A1,2, Peterlin B1,2,* *Corresponding Author: *Corresponding Author: Prof. Borut Peterlin, Clinical Institute of Genomic Medicine, University
Medical Centre Ljubljana, Šlajmerjeva 4, 1000 Ljubljana, Slovenia. borut.peterlin@kclj.si page: 87
|
REFERENCES
1.
Dremsek P, Schwarz T, Weil B, Malashka A, Laccone
F, Neesen J. Optical Genome Mapping in Routine
Human Genetic Diagnostics—Its Advantages and
Limitations. Genes. 2021;12(12):1958. doi:10.3390/
genes12121958
2.
Mantere T, Neveling K, Pebrel-Richard C, et al.
Optical genome mapping enables constitutional
chromosomal aberration detection. Am J Hum
Genet. 2021;108(8):1409-1422. doi:10.1016/j.
ajhg.2021.05.012
3.
Levy B, Baughn LB, Akkari Y, et al. Optical ge-
nome mapping in acute myeloid leukemia: a multi-
center evaluation. Blood Adv. 2023;7(7):1297-1307.
doi:10.1182/bloodadvances.2022007583
4.
Coccaro N, Anelli L, Zagaria A, et al. Feasibility of
Optical Genome Mapping in Cytogenetic Diagnos-
tics of Hematological Neoplasms: A New Way to
Look at DNA. Diagn Basel Switz. 2023;13(11):1841.
doi:10.3390/diagnostics13111841
5.
Giguère A, Raymond-Bouchard I, Collin V, Claveau
JS, Hébert J, LeBlanc R. Optical Genome Mapping
Reveals the Complex Genetic Landscape of My-
eloma. Cancers. 2023;15(19):4687. doi:10.3390/
cancers15194687
6.
Puiggros A, Ramos-Campoy S, Kamaso J, et al. Op-
tical Genome Mapping: A Promising New Tool to
Assess Genomic Complexity in Chronic Lympho-
cytic Leukemia (CLL). Cancers. 2022;14(14):3376.
doi:10.3390/cancers14143376
7.
Tsai HH, Kao HJ, Kuo MW, et al. Whole genomic
analysis reveals atypical non-homologous off-tar-
get large structural variants induced by CRISPR-
Cas9-mediated genome editing. Nat Commun.
2023;14(1):5183. doi:10.1038/s41467-023-40901-x
8.
Zhang Q, Xu X, Ding L, et al. Clinical application
of single‐molecule optical mapping to a multigen-
eration FSHD1 pedigree. Mol Genet Genomic Med.
2019;7(3):e565. doi:10.1002/mgg3.565
9.
Stence AA, Thomason JG, Pruessner JA, et al. Valida-
tion of Optical Genome Mapping for the Molecular
Diagnosis of Facioscapulohumeral Muscular Dys-
trophy. J Mol Diagn JMD. 2021;23(11):1506-1514.
doi:10.1016/j.jmoldx.2021.07.021
10. Efthymiou S, Lemmers RJLF, Vishnu VY, et al.
Optical Genome Mapping for the Molecular Di-
agnosis of Facioscapulohumeral Muscular Dystro-
phy: Advancement and Challenges. Biomolecules.
2023;13(11):1567. doi:10.3390/biom13111567
11. Kovanda A, Lovrečić L, Rudolf G, et al. Evalua-
tion of Optical Genome Mapping in Clinical Ge-
netic Testing of Facioscapulohumeral Muscular
Dystrophy. Genetic and Genomic Medicine; 2023.
doi:10.1101/2023.08.10.23292816
12. Rogac M, Kovanda A, Lovrečić L, Peterlin B. Optical
genome mapping in an atypical Pelizaeus-Merzbach-
er prenatal challenge. Front Genet. 2023;14:1173426.
doi:10.3389/fgene.2023.1173426
13. Ales M, Luca L, Marija V, et al. Phenotype-driven gene
target definition in clinical genome-wide sequencing
data interpretation. Genet Med. 2016;18(11):1102-
1110. doi:10.1038/gim.2016.22
14. Bergant G, Maver A, Lovrecic L, Čuturilo G, Hodzic
A, Peterlin B. Comprehensive use of extended exome
analysis improves diagnostic yield in rare disease:
a retrospective survey in 1,059 cases. Genet Med.
2018;20(3):303-312. doi:10.1038/gim.2017.142
15. Riggs ER, Andersen EF, Cherry AM, et al. Technical
standards for the interpretation and reporting of con-
stitutional copy-number variants: a joint consensus
recommendation of the American College of Medical
Genetics and Genomics (ACMG) and the Clinical
Genome Resource (ClinGen). Genet Med Off J Am
Coll Med Genet. 2020;22(2):245-257. doi:10.1038/
s41436-019-0686-8
16. MacDonald JR, Ziman R, Yuen RKC, Feuk L,
Scherer SW. The Database of Genomic Variants: a
curated collection of structural variation in the hu-
man genome. Nucleic Acids Res. 2014;42(Database
issue):D986-992. doi:10.1093/nar/gkt958
17. Moore S, McGowan-Jordan J, Smith AC, et al. Ge-
nome Mapping Nomenclature. Cytogenet Genome
Res. 2023;163(5-6):236-246. doi:10.1159/000535684
18. The GIMP Development Team. GIMP. Published
online June 12, 2019. https://www.gimp.org
19. Phillips-Cremins JE, Corces VG. Chromatin Insula-
tors: Linking Genome Organization to Cellular Func-
tion. Mol Cell. 2013;50(4):461-474. doi:10.1016/j.
molcel.2013.04.018
20. van Steensel B, Belmont AS. Lamina-Associated
Domains: Links with Chromosome Architecture,
Heterochromatin, and Gene Repression. Cell.
2017;169(5):780-791. doi:10.1016/j.cell.2017.04.022
21. Huang H, Zhu Q, Jussila A, et al. CTCF mediates dos-
age- and sequence-context-dependent transcriptional
insulation by forming local chromatin domains. Nat
Genet. 2021;53(7):1064-1074. doi:10.1038/s41588-
021-00863-6
22. Hong CKY, Cohen BA. Genomic environments scale
the activities of diverse core promoters. Genome Res.
2022;32(1):85-96. doi:10.1101/gr.276025.121
23. Nassar LR, Barber GP, Benet-Pagès A, et al. The
UCSC Genome Browser database: 2023 update.
Nucleic Acids Res. 2023;51(D1):D1188-D1195.
doi:10.1093/nar/gkac1072
24. Fjorder AS, Rasmussen MB, Mehrjouy MM, et
al. Haploinsufficiency of ARHGAP42 is associ-
ated with hypertension. Eur J Hum Genet EJHG.
2019;27(8):1296-1303. doi:10.1038/s41431-019-
0382-9
25. Nagao K, Ito H, Yoshida H. Chromosomal transloca-
tion t(X;18) in human synovial sarcomas analyzed
by fluorescence in situ hybridization using paraffin-
embedded tissue. Am J Pathol. 1996;148(2):601-609.
26. Udayakumar AM, Sundareshan TS, Mukherjee G,
Biswas S, Rajan KR, Prabhakaran PS. Submandibular
synovial sarcoma with t(X;18) and synovial sarcoma
of the toe with additional cytogenetic abnormalities.
Cancer Genet Cytogenet. 2002;134(2):151-155.
doi:10.1016/S0165-4608(01)00606-9
27. The ACMG Laboratory Quality Assurance Commit-
tee, Richards S, Aziz N, et al. Standards and guide-
lines for the interpretation of sequence variants: a
joint consensus recommendation of the American
College of Medical Genetics and Genomics and the
Association for Molecular Pathology. Genet Med.
2015;17(5):405-423. doi:10.1038/gim.2015.30
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|