VALUE OF OPTICAL GENOME MAPPING (OGM) FOR DIAGNOSTICS OF RARE DISEASES: A FAMILY CASE REPORT
Kovanda A1,2, Miljanović O3, Lovrečić L1,2, Maver A1,2, Hodžić A1,2, Peterlin B1,2,*
*Corresponding Author: *Corresponding Author: Prof. Borut Peterlin, Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Šlajmerjeva 4, 1000 Ljubljana, Slovenia. borut.peterlin@kclj.si
page: 87
download article in pdf format

Abstract

Optical genome mapping (OGM) is a novel method enabling the detection of structural genomic variants. The method is based on the laser image acquisition of single, labeled, high-molecular-weight DNA molecules and can detect structural genomic variants such as translocations, inversions, insertions, deletions, duplications, and com- plex structural rearrangements. We aim to present our experience with OGM at the Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Slovenia. Since its introduction in 2021, we have used OGM for the testing of facioscapulohumeral muscular dystrophy 1, characterization and resolution of variants identified by other technologies such as microarrays, exome and genome next-generation sequencing, karyotyping, as well as testing of rare disease patients in whom no genetic cause could be identified using these methods. We present an example family case of two previously undiagnosed male siblings with an overlapping clinical presentation of thrombocytopenia, obesity, and presacral teratoma. After karyotyping, microarray analysis and next-generation sequencing, by using OGM, a maternally inherited cryptic translocation t(X;18)(q27.1;q12.2) was identified in both brothers. Despite an extended segrega- tion analysis, based on strictly applied ACMG criteria and ClinGen guidelines, the identified translocation remains a variant of unknown significance. Despite the remaining limitations of OGM, which will hopefully be resolved by improvements in databases of known benign SV variation and the establishment of official guidelines on the clinical interpretation of OGM variants, our work highlights the complexity of the diagnostic journey, including this novel method, in rare disease cases.



Number 27
VOL. 27 (2), 2024
Number 27
VOL. 27 (1), 2024
Number 26
Number 26 VOL. 26(2), 2023 All in one
Number 26
VOL. 26(2), 2023
Number 26
VOL. 26, 2023 Supplement
Number 26
VOL. 26(1), 2023
Number 25
VOL. 25(2), 2022
Number 25
VOL. 25 (1), 2022
Number 24
VOL. 24(2), 2021
Number 24
VOL. 24(1), 2021
Number 23
VOL. 23(2), 2020
Number 22
VOL. 22(2), 2019
Number 22
VOL. 22(1), 2019
Number 22
VOL. 22, 2019 Supplement
Number 21
VOL. 21(2), 2018
Number 21
VOL. 21 (1), 2018
Number 21
VOL. 21, 2018 Supplement
Number 20
VOL. 20 (2), 2017
Number 20
VOL. 20 (1), 2017
Number 19
VOL. 19 (2), 2016
Number 19
VOL. 19 (1), 2016
Number 18
VOL. 18 (2), 2015
Number 18
VOL. 18 (1), 2015
Number 17
VOL. 17 (2), 2014
Number 17
VOL. 17 (1), 2014
Number 16
VOL. 16 (2), 2013
Number 16
VOL. 16 (1), 2013
Number 15
VOL. 15 (2), 2012
Number 15
VOL. 15, 2012 Supplement
Number 15
Vol. 15 (1), 2012
Number 14
14 - Vol. 14 (2), 2011
Number 14
The 9th Balkan Congress of Medical Genetics
Number 14
14 - Vol. 14 (1), 2011
Number 13
Vol. 13 (2), 2010
Number 13
Vol.13 (1), 2010
Number 12
Vol.12 (2), 2009
Number 12
Vol.12 (1), 2009
Number 11
Vol.11 (2),2008
Number 11
Vol.11 (1),2008
Number 10
Vol.10 (2), 2007
Number 10
10 (1),2007
Number 9
1&2, 2006
Number 9
3&4, 2006
Number 8
1&2, 2005
Number 8
3&4, 2004
Number 7
1&2, 2004
Number 6
3&4, 2003
Number 6
1&2, 2003
Number 5
3&4, 2002
Number 5
1&2, 2002
Number 4
Vol.3 (4), 2000
Number 4
Vol.2 (4), 1999
Number 4
Vol.1 (4), 1998
Number 4
3&4, 2001
Number 4
1&2, 2001
Number 3
Vol.3 (3), 2000
Number 3
Vol.2 (3), 1999
Number 3
Vol.1 (3), 1998
Number 2
Vol.3(2), 2000
Number 2
Vol.1 (2), 1998
Number 2
Vol.2 (2), 1999
Number 1
Vol.3 (1), 2000
Number 1
Vol.2 (1), 1999
Number 1
Vol.1 (1), 1998

 

 


 About the journal ::: Editorial ::: Subscription ::: Information for authors ::: Contact
 Copyright © Balkan Journal of Medical Genetics 2006