
ASSOCIATION OF CYP2C19*2 C.681G>A (RS4244285) LOSS-OF-FUNCTION ALLELE WITH CARDIOVASCULAR DISEASE RISK IN THE KOSOVO POPULATION Elshani N1*, Ukella K1, Staninova Stojovska M2, Naumovska Z2, Kurshumliu M3, Gorani D4, Kapedanovska Nestorovska A *Corresponding Author: Corresponding Author: Nora Elshani, Glloku te Shelgjet “Veternik” 10000-Prishtinë, Kosova. Phone: +38344601032. E-mail: nora.elshani1@gmail.com; nora.elshani@rezonanca-rks.com. page: 0
|
REFERENCES
1.
Abubakar M, Raza S, Hassan KM, Javed I, Hassan
KM, Farrukh F, et al. Efficacy, safety, and role of
antiplatelet drugs in the management of acute coro-
nary syndrome: a comprehensive review of literature.
Cureus. 2023;15(3):e36335.
2.
Chandiramani R, Spirito A, Johnson JW, Mehta
A, Vogel B, Faillace RT, et al. Antiplatelet therapy
for coronary artery disease in 2023: current status
and future prospects. Expert Rev Cardiovasc Ther.
2023;21(5):311-28.
3.
Magavern EF, Jacobs B, Warren H, Finocchiaro G,
Finer S, van Heel DA, et al. CYP2C19 genotype
prevalence and association with recurrent myocar-
dial infarction in British-South Asians treated with
clopidogrel. JACC Adv. 2023;2(7):100573.
4.
Sangkuhl K, Klein TE, Altman RB. Clopidogrel path-
way. Pharmacogenet Genomics. 2010;20(7):463-5.
5.
Mega JL, Close SL, Wiviott SD, Shen L, Walker
JR, Simon T, et al. Genetic variants in ABCB1 and
CYP2C19 and cardiovascular outcomes after treat-
ment with clopidogrel and prasugrel in the TRITON-
TIMI 38 trial: a pharmacogenetic analysis. Lancet.
2010;376(9749):1312-9.
6.
Mega JL, Simon T, Collet JP, Anderson JL, Antman
EM, Bliden K, et al. Reduced-function CYP2C19
genotype and risk of adverse clinical outcomes among
patients treated with clopidogrel predominantly for
PCI: a meta-analysis. JAMA. 2010;304(16):1821-30.
7.
Wallentin L, James S, Storey RF, Armstrong M,
Barratt BJ, Horrow J, et al. Effect of CYP2C19 and
ABCB1 single nucleotide polymorphisms on out-
comes of treatment with ticagrelor versus clopidogrel
for acute coronary syndromes: a genetic substudy of
the PLATO trial. Lancet. 2010;376(9749):1320-8.
8.
Chen YW, Liao YJ, Chang WC, Hsiao TH, Lin CH,
Hsu CY, et al. CYP2C19 loss-of-function alleles pre-
dict clinical outcomes in East Asian patients with
acute myocardial infarction undergoing percutaneous
coronary intervention and stenting receiving clopi-
dogrel. Front Cardiovasc Med. 2022;9:994184.
9.
Wang T, Feng J, Zhou L, Zhao T, Zhang H, Shen H, et
al. The cytochrome P450 2C19 polymorphism associ-
ated with major adverse cardiovascular events risk
in Kazak patients undergoing percutaneous coronary
intervention and receiving clopidogrel. Endocr Metab
Immune Disord Drug Targets. 2023;23(2):196-204.
10. Pereira NL, Cresci S, Angiolillo DJ, Batchelor W,
Capers IV Q, Cavallari LH, et al. CYP2C19 genetic
testing for oral P2Y12 inhibitor therapy: a scientific
statement from the American Heart Association. Cir-
culation. 2024;150(6):e129-50.
11. Beitelshees AL, Thomas CD, Empey PE, Stouffer
GA, Angiolillo DJ, Franchi F, et al. CYP2C19 gen-
otype-guided antiplatelet therapy after percutaneous
coronary intervention in diverse clinical settings. J
Am Heart Assoc. 2022;11(4):e024159.
12. Claassens DMF, Vos GJA, Bergmeijer TO, Herma-
nides RS, Hof AWJ van’t, Harst P van der, et al. A
genotype-guided strategy for oral P2Y12 inhibitors in
primary PCI. N Engl J Med. 2019;381(17):1621-31. 13. Kleindorfer DO, Towfighi A, Chaturvedi S, Cock-
roft KM, Gutierrez J, Lombardi-Hill D, et al. 2021
guideline for the prevention of stroke in patients with
stroke and transient ischemic attack: a guideline from
the American Heart Association/American Stroke
Association. Stroke. 2021;52(7):e364-467.
14. Gower MN, Ratner LR, Williams AK, Rossi JS,
Stouffer GA, Lee CR. Clinical utility of CYP2C19
genotype-guided antiplatelet therapy in patients at
risk of adverse cardiovascular and cerebrovascular
events: a review of emerging evidence. Pharmgenom-
ics Pers Med. 2020;13:239-52.
15. Baudhuin LM, Train LJ, Goodman SG, Lane GE,
Lennon RJ, Mathew V, et al. Point-of-care CYP2C19
genotyping after percutaneous coronary intervention.
Pharmacogenomics J. 2022;22(5-6):303-7.
16. Russmann S, Rahmany A, Niedrig D, Hatz KD, Ludin
K, Burden AM, et al. Implementation and manage-
ment outcomes of pharmacogenetic CYP2C19 testing
for clopidogrel therapy in clinical practice. Eur J Clin
Pharmacol. 2021;77(5):709-16.
17. Lee CR, Luzum JA, Sangkuhl K, Gammal RS, Sa-
batine MS, Stein CM, et al. Clinical Pharmacoge-
netics Implementation Consortium guideline for
CYP2C19 genotype and clopidogrel therapy: 2022
update. Clin Pharmacol Ther. 2022;112(5):959-67.
18. Abdullah-Koolmees H, Van Keulen AM, Nijen-
huis M, Deneer VH. Pharmacogenetics guidelines:
overview and comparison of the DPWG, CPIC,
CPNDS, and RNPGx guidelines. Front Pharmacol.
2021;11:595219.
19. Saiz-Rodríguez M, Belmonte C, Caniego JL, Koller
D, Zubiaur P, Bárcena E, et al. Influence of CYP450
enzymes, CES1, PON1, ABCB1, and P2RY12 poly-
morphisms on clopidogrel response in patients sub-
jected to a percutaneous neurointervention. Clin Ther.
2019;41(6):1199-1212.e2.
20. Du P, Li X, Li D, Ma Y, Ni M, Li Y, et al. PEAR1,
PON1, CYP2C19, CYP1A2 and F2R polymorphisms
are associated with MACE in clopidogrel-treated
patients with acute coronary syndrome undergoing
percutaneous coronary intervention. Pharmgenomics
Pers Med. 2024;17:611-21.
21. Eken E, Estores DS, Cicali EJ, Wiisanen KK, Johnson
JA. A pharmacogenetics-based approach to manag-
ing gastroesophageal reflux disease: current perspec-
tives and future steps. Pharmgenomics Pers Med.
2023;16:645-64.
22. Biswas M, Rahaman S, Biswas TK, Ibrahim B. Risk
of major adverse cardiovascular events for concomi-
tant use of clopidogrel and proton pump inhibitors in
patients inheriting CYP2C19 loss-of-function alleles:
meta-analysis. Int J Clin Pharm. 2021;43(5):1360-69.
23. Wang J, Kuang J, Yi Y, Peng C, Ge Y, Yin S, et al.
Does CYP2C19 polymorphisms affect neurological
deterioration in stroke/TIA patients?: a systematic
review and meta-analysis of prospective cohort stud-
ies. Medicine (Baltimore). 2021;100(11):e25150.
24. Mugosa S, Radosavljevic I, Sahman M, Djordjevic
N, Todorovic Z. Risk factors for adverse drug reac-
tions associated with clopidogrel therapy. Open Med
(Wars). 2022;17(1):694-701.
25. Cavallari LH, Limdi NA, Beitelshees AL, Lee JC,
Duarte JD, Franchi F, et al. Evaluation of potential ra-
cial disparities in CYP2C19-guided P2Y12 inhibitor
prescribing after percutaneous coronary intervention.
Clin Pharmacol Ther. 2023;113(3):615-23.
26. Nguyen AB, Cavallari LH, Rossi JS, Stouffer GA,
Lee CR. Evaluation of race and ethnicity dispari-
ties in outcome studies of CYP2C19 genotype-
guided antiplatelet therapy. Front Cardiovasc Med.
2022;9:991646.
27. Krasniqi V, Dimovski A, Bytyqi HQ, Eftimov A,
Šimičević L, Božina N. Genetic polymorphisms of
CYP2C9, CYP2C19, and CYP3A5 in Kosovar popu-
lation. Arch Ind Hyg Toxicol. 2017;68(3):180-84.
28. Castrichini M, Luzum JA, Pereira N. Pharmacoge-
netics of antiplatelet therapy. Annu Rev Pharmacol
Toxicol. 2023;63:211-29.
29. Kapedanovska Nestorovska A, Jakovski K, Nau-
movska Z, Bajro MH, Sterjev Z, Eftimov A, et al.
Distribution of the most common genetic variants
associated with a variable drug response in the popu-
lation of the Republic of Macedonia. Balkan J Med
Genet. 2015;17(2):5-14.
30. Petrović J, Pešić V, Lauschke VM. Frequencies of
clinically important CYP2C19 and CYP2D6 al-
leles are graded across Europe. Eur J Hum Genet.
2020;28:88-94.
31. Vidović S, Škrbić R, Stojiljković MP, Vidović V,
Bećarević J, Stoisavljević-Šatara S, et al. Prevalence
of five pharmacologically most important CYP2C9
and CYP2C19 allelic variants in the population from
the Republic of Srpska in Bosnia and Herzegovina.
Arh Hig Rada Toksikol. 2021;72(3):129-34. 32. Kapedanovska-Nestorovska A, Dimovski AJ, Sterjev
Z, Geskovska NM, Suturkova L, Ugurov P, et al. The
AKR1D1*36 (rs1872930) allelic variant is indepen-
dently associated with clopidogrel treatment outcome.
Pharmgenomics Pers Med. 2019;12:287-95.
33. Bačković D, Ignjatović S, Rakićević L, Kušić-Tišma
J, Radojković D, Čalija B, et al. Influence of CY-
P2C19*2 gene variant on therapeutic response during
clopidogrel treatment in patients with carotid artery
stenosis. J Med Biochem. 2016;35(1):26-33.
34. Petranovic MZ, Tomas Z, Skaric-Juric T, Narancic
NS, Janicijevic B, Salihovic MP. The variation of
CYP2C19 gene in the Roma population from Croatia.
Med Biol. 2018;1(2):32-37.
35. Sarkis A, Roman RJ. Role of cytochrome P450 me-
tabolites of arachidonic acid in hypertension. Curr
Drug Metab. 2004;5(3):245-56.
36. Shahabi P, Siest G, Meyer UA, Visvikis-Siest S. Hu-
man cytochrome P450 epoxygenases: variability in
expression and role in inflammation-related disorders.
Pharmacol Ther. 2014;144(2):134-61.
37. Rothenbacher D, Hoffmann MM, Breitling LP, Rajman
I, Koenig W, Brenner H. Cytochrome P450 2C19*2
polymorphism in patients with stable coronary heart
disease and risk for secondary cardiovascular disease
events: results of a long-term follow-up study in routine
clinical care. BMC Cardiovasc Disord. 2013;13:1-11.
38. Zhang YY, Zhou X, Ji WJ, Liu T, Ma J, Zhang Y, et
al. Association between CYP2C19*2/*3 polymor-
phisms and coronary heart disease. Curr Med Sci.
2019;39:44-51.
39. Cai N, Li C, Gu X, Zeng W, Zhong J, Liu J, et al. CY-
P2C19 loss-of-function is associated with increased
risk of hypertension in a Hakka population: a case-
control study. BMC Cardiovasc Disord. 2023;23:185.
40. Martínez-Quintana E, Rodríguez-González F, Medi-
na-Gil JM, Garay-Sánchez P, Tugores A. CYP2C19
activity and cardiovascular risk factors in patients
with an acute coronary syndrome. Med Clin (Barc).
2017;149(6):235-39.
41. Chen W, Liu Y, Deng X, Li B, Wang H, Wei G, et al.
CYP2C19 loss-of-function is an associated risk factor
for premature coronary artery disease: a case-control
study. Int J Gen Med. 2024;17:5049-58.
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|