
TARGETED microRNA PROFILING IN GASTRIC CANCER
WITH CLINICAL ASSESSEMENT Pehlevan Ozel H, Dinç T, Tiryaki RS2, Keşkus AG, Konu O, Kayilioglu SI, Coşkun F *Corresponding Author: Tolga Dinç, M.D., Associate Professor, Department of General Surgery,
Health Sciences University, Ankara City Hospital, Üniversiteler Mahallesi 1604. Cadde No: 9 Çankaya/
Ankara/Turkey. Tel./Fax: +90-312-552-60-00. Intercom: 121514. Mobile: +90-532-481-22-75. Email:
tolga_dr@hotmail.com page: 55
|
REFERENCES
1. National Comprehensive Cancer Network (NCCN).
Clinical Practice Guidelines in Oncology Gastric
Cancer (Version 2.2020). [Accessed July 7, 2020].
Available at: http://www.nccn.org/professionals/physician_
gls/pdf/ gastric.pdf.
2. Strand MS, Lockhart AC, Fields RC. Genetics of gastric
cancer. Surg Clin North Am. 2017; 97(2): 345-370.
3. Wang Q, Liu G, Hu C. Molecular classification of
gastric adenocarcinoma. Gastroenterology Res. 2019;
12(6): 275-282.
4. Jansson MD, Lund AH. MicroRNA and cancer. Mol
Oncol. 2012; 6(6): 590-610.
5. Price C, Chen J. MicroRNAs in cancer biology and
therapy: Current status and perspectives. Genes Dis.
2014; 1(1): 53-63.
6. Yang Z, Wu L, Wang A, Tang W, Zhao Y, Zhao H, et
al. DbDEMC 2.0: Updated database of differentially
expressed miRNAs in human cancers. Nucleic Acids
Res. 2017; 45(D1): D812-D818. 7. East Carolina University, Greenville, NC, USA. microRNA
Cancer Association Database. Published
2020. [Accessed February 18 2019]. Available at:
http://mir cancer. ecu.edu/ index.jsp.
8. National Center for Biotechnology Information
(NCBI). DNA and RNA databases. Published 2019.
[Accessed July 7 2020] Available at: https://www.
ncbi.nlm. nih.gov/.
9. Morata-Tarifa C, Picon-Ruiz M, Griñan-Lison C,
Boulaiz H, Perán M, Garcia MA, et al. Validation
of suitable normalizers for miR expression patterns
analysis covering tumour heterogeneity. Sci Rep.
2017; 7: 39782.
10. Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M,
Nguyen LT, Uchida T, et al. MicroRNA-375 is downregulated
in gastric carcinomas and regulates cell
survival by targeting PDK1 and 14-3-3zeta. Cancer
Res. 2010; 70(6): 2339-2349.
11. Ding L, Xu Y, Zhang W, Deng Y, Si M, Du Y, et al.
MiR-375 frequently downregulated in gastric cancer
inhibits cell proliferation by targeting JAK2. Cell Res.
2010; 20(7): 784-793.
12. Shen Z-Y, Zhang Z-Z, Liu H, Zhao E-H, Cao H. miR-
375 inhibits the proliferation of gastric cancer cells by
repressing ERBB2 expression. Exp Ther Med. 2014;
7(6): 1757-1761.
13. Sakamoto N, Naito Y, Oue N, Sentani K, Uraoka N,
Oz HZ, et al. MicroRNA-148a is downregulated in
gastric cancer, targets MMP7, and indicates tumor
invasiveness and poor prognosis. Cancer Sci. 2014;
105(2): 236-243.
14. Zheng G, Xiong Y, Xu W, Wang Y, Chen F, Wang
Z, et al. A two-microRNA signature as a potential
biomarker for early gastric cancer. Oncol Lett. 2014;
7(3): 679-684.
15. Zheng B, Liang L, Wang C, Huang S, Cao X, Zha R,
et al. MicroRNA-148a suppresses tumor cell invasion
and metastasis by downregulating ROCK1 in gastric
cancer. Clin Cancer Res. 2011; 17(24): 7574-7583.
16. Tu L, Zhao E, Zhao W, Zhang Z, Tang D, Zhang Y, et
al. hsa-miR-376c-3p regulates gastric tumor growth
both in vitro and in vivo. BioMed Res Int. 2016; 2016:
1-7.
17. Hung P-S, Chen C-Y, Chen W-T, Kuo C-Y, Fang W-L,
Huang KH, et al. miR-376c promotes carcinogenesis
and serves as a plasma marker for gastric carcinoma.
PLos One. 2017; 12(5): e0177346.
18. Yu X, Song H, Xia T, Han S, Xiao B, Luo L, et al.
Growth inhibitory effects of three miR-129 family
members on gastric cancer. Gene. 2013; 532(1): 87-93.
19. Xu C, Shao Y, Xia T, Yang Y, Dai J, Luo L, et al.
lncRNA-AC130710 targeting by miR-129-5p is upregulated
in gastric cancer and associates with poor
prognosis. Tumor Biol. 2014; 35(10): 9701-9706.
20. Wu H, Huang M, Lu M, Zhu W, Shu Y, Cao P, et
al. Regulation of microtubule-associated protein tau
(MAPT) by miR-34c-5p determines the chemosensitivity
of gastric cancer to paclitaxel. Cancer Chemother
Pharmacol. 2013; 71(5): 1159-1171.
21. Oh H-K, Tan AL-k, Das K, Ooi C-H, Deng N-T, Tan
IB, et al. Genomic loss of miR-486 regulates tumor progression
and the OLFM4 antiapoptotic factor in gastric
cancer. Clin Cancer Res. 2011; 17(9): 2657-2667.
22. Geng H, Li K, Pan Q, Tao S, Li C, Zhao H, et al. Identification
and expression of several circular RNAs and
knockdown of hsa_circ_0005556 exerts oncogenic
functions by miR-767-5p in gastric cancer. Med Sci
Monit. 2020; 26: e921163.
23. Bradburn S. How to perform the delta-delta Ct method?
[Accessed July 7 2020] Available at: https:// toptipbio.
com/delta-delta-ct-pcr/.
24. Wickham H. ggplot2: Elegant Graphics for Data
Analysis. New York, NY, USA: Springer-Verlag,
2016. Retrieved from https://ggplot2.tidyverse.org.
25. Brierley J, Gospodarowicz MK, Wittekind CH, Editors.
TNM Classification of Malignant Tumours, 8th ed.
Oxford, Oxon, UK; John Wiley & Sons, Inc.; 2017.
26. Sexton RE, Al Hallak MN, Diab M, Azmi AS. Gastric
cancer: A comprehensive review of current and future
treatment strategies. Cancer Metastasis Rev. 2020;
39(4): 1179-1203.
27. Link A, Kupcinskas J. MicroRNAs as non-invasive
diagnostic biomarkers for gastric cancer: Current insights
and future perspectives. World J Gastroenterol.
2018; 24(30): 3313-3329.
28. Li Z, Liu Z-M, Xu B-H. A meta-analysis of the effect
of microRNA-34a on the progression and prognosis
of gastric cancer. Eur Rev Med Pharmacol Sci. 2018;
22(23): 8281-8287.
29. Wang Q-X, Zhu Y-Q, Zhang H, Xiao J. Altered
miRNA expression in gastric cancer: A systematic
review and meta-analysis. Cell Physiol Biochem.
2015; 35(3): 933-944.
30. Ben-Dayan MM, MacCarthy T, Schlecht NF, Belbin
TJ, Childs G, Smith RV, et al. Cancer as the disintegration
of robustness: Population-level variance in
gene expression identifies key differences between
tobacco- and HPV-associated oropharyngeal carcinogenesis.
Arch Pathol Lab Med.. 2015; 139(11):
1362-1372. 31. Hooten NN, Fitzpatrick M, Wood WH 3rd, De S,
Ejiogu N, Zhang Y, et al. Age-related changes in
micro-RNA levels in serum. Aging (Albany NY).
2013; 5(10): 725-740.
32. Cui S, Zhang K, Li C, Chen J, Pan Y, Feng B, et
al. Methylation-associated silencing of microRNA-
129-3p promotes epithelial-mesenchymal transition,
invasion and metastasis of hepatocelluar cancer by
targeting Aurora-A. Oncotarget. 2016; 7(47): 78009-
78028.
33. Xu Y, Deng Y, Yan X, Zhou T. Targeting miR-375 in
gastric cancer. Expert Opin Ther Targets. 2011; 15(8):
961-972.
34. Bhatti I, Lee A, James V, Hall RI, Lund JN, Tufarelli C,
et al. Knockdown of microRNA-21 inhibits proliferation
and increases cell death by targeting programmed
cell death 4 (PDCD4) in pancreatic ductal adenocarcinoma.
J Gastrointest Surg. 2011; 15(1): 199-208.
35. Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z, et
al. Early detection of lung adenocarcinoma in sputum
by a panel of microRNA markers. Int J Cancer. 2010;
127(12): 2870-2878.
36. Yan X-L, Luo Q-Y, Zhou S-N, Pan W-T, Zhang L,
Yang D-J, et al. MicroRNA-375 reverses the expression
of PD-L1 by inactivating the JAK2/STAT3 signaling
pathways in gastric cancer. Clin Res Hepatol
Gastroenterol. 2021; 45(5): 101574.
37. Lian S, Park J, Xia Y, Nguyen TT, Joo YE, Kim KK,
et al. MicroRNA-375 functions as a tumor-suppressor
gene in gastric cancer by targeting Recepteur
d’Origine Nantais. Int J Mol Sci. 2016; 17(10): 1633.
38. Ni H, Qin H, Sun C, Liu Y, Ruan G, Guo Q, et al.
MiR-375 reduces the stemness of gastric cancer cells
through triggering ferroptosis. Stem Cell Res Ther.
2021; 12(1): 325.
39. Xia J, Guo X, Yan J, Deng K. The role of miR-148a
in gastric cancer. J Cancer Res Clin Oncol. 2014;
140(9): 1451-1456.
40. Yu B, Lv X, Su L, Li J, Yu Y, Gu Q, et al. MiR-148a
functions as a tumor suppressor by targeting CCKBR
via inactivating STAT3 and Akt in human gastric
cancer. PLoS One. 2016; 11(8): e0158961.
41. Mu Y-P, Tang S, Sun W-J, Gao W-M, Wang M, Su
X-L. Association of miR-193b down-regulation and
miR-196a up-regulation with clinicopathological
features and prognosis in gastric cancer. Asian Pac J
Cancer Prev. 2014; 15(20): 8893-8900.
42. Chen C, Zhang Y, Zhang L, Weakley SM, Yao Q.
MicroRNA-196: Critical roles and clinical applications
in development and cancer. J Cell Mol Med.
2011; 15(1): 14-23.
43. Skrzypski M, Czapiewski P, Goryca K, Jassem E,
Wrywicz L, Pawlowski R, et al. Prognostic value of
microRNA expression in operable non-small cell lung
cancer patients. Br J Cancer. 2014; 110(4): 991-1000.
44. Filipska M, Skrzypski M, Czetyrbok K, Stokowy T,
Stasilojc G, Supernat A, et al. MiR-192 and miR-
662 enhance chemoresistance and invasiveness of
squamous cell lung carcinoma. Lung Cancer. 2018;
118: 111-118.
45. Loriot A, Van Tongelen A, Blanco J, Klaessens S,
Cannuyer J, Van Baren N, et al. A novel cancergermline
transcript carrying pro-metastatic miR-
105 and TET-targeting miR-767 induced by DNA
hypomethylation in tumors. Epigenetics. 2014; 9(8):
1163-1171.
46. Zhang K, Guo L. MiR-767 promoted cell proliferation
in human melanoma by suppressing CYLD expression.
Gene. 2018; 641: 272-278.
47. Feng Y, Zhang L, Wu J, Khadka B, Fang Z, Gu J, et
al. CircRNA circ_0000190 inhibits the progression
of multiple myeloma through modulating miR-767-
5p/ MAPK4 pathway. J Exp Clin Cancer Res. 2019;
38(1): 54.
48. Liu H, Wu Y, Wang S, Jiang J, Zhang C, Jiang Y, et al.
Circ-SMARCA5 suppresses progression of multiple
myeloma by targeting miR-767-5p. BMC Cancer.
2019; 19(1): 937.
49. Zhang L, Geng Z, Wan Y, Meng F, Meng X, Wang L.
Functional analysis of miR-767-5p during the progression
of hepatocellular carcinoma and the clinical
relevance of its dysregulation. Histochem Cell Biol.
2020; 154(2): 231-243.
50. Xiang Z, Xu C, Wu G, Liu B, Wu D. CircRNA-UCK2
increased TET1 inhibits proliferation and invasion
of prostate cancer cells via sponge miRNA-767-5p.
Open Med (Wars). 2019; 14(1): 833-842.
51. Zhang J, Xu S, Xu J, Li Y, Zhang J, Zhang J, et al. miR
767 5p inhibits glioma proliferation and metastasis
by targeting SUZ12. Oncol Rep. 2019; 42(1): 55-66.
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|