TARGETED microRNA PROFILING IN GASTRIC CANCER WITH CLINICAL ASSESSEMENT
Pehlevan Ozel H, Dinç T, Tiryaki RS2, Keşkus AG, Konu O, Kayilioglu SI, Coşkun F
*Corresponding Author: Tolga Dinç, M.D., Associate Professor, Department of General Surgery, Health Sciences University, Ankara City Hospital, Üniversiteler Mahallesi 1604. Cadde No: 9 Çankaya/ Ankara/Turkey. Tel./Fax: +90-312-552-60-00. Intercom: 121514. Mobile: +90-532-481-22-75. Email: tolga_dr@hotmail.com
page: 55

REFERENCES

1. National Comprehensive Cancer Network (NCCN). Clinical Practice Guidelines in Oncology Gastric Cancer (Version 2.2020). [Accessed July 7, 2020]. Available at: http://www.nccn.org/professionals/physician_ gls/pdf/ gastric.pdf. 2. Strand MS, Lockhart AC, Fields RC. Genetics of gastric cancer. Surg Clin North Am. 2017; 97(2): 345-370. 3. Wang Q, Liu G, Hu C. Molecular classification of gastric adenocarcinoma. Gastroenterology Res. 2019; 12(6): 275-282. 4. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012; 6(6): 590-610. 5. Price C, Chen J. MicroRNAs in cancer biology and therapy: Current status and perspectives. Genes Dis. 2014; 1(1): 53-63. 6. Yang Z, Wu L, Wang A, Tang W, Zhao Y, Zhao H, et al. DbDEMC 2.0: Updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res. 2017; 45(D1): D812-D818. 7. East Carolina University, Greenville, NC, USA. microRNA Cancer Association Database. Published 2020. [Accessed February 18 2019]. Available at: http://mir cancer. ecu.edu/ index.jsp. 8. National Center for Biotechnology Information (NCBI). DNA and RNA databases. Published 2019. [Accessed July 7 2020] Available at: https://www. ncbi.nlm. nih.gov/. 9. Morata-Tarifa C, Picon-Ruiz M, Griñan-Lison C, Boulaiz H, Perán M, Garcia MA, et al. Validation of suitable normalizers for miR expression patterns analysis covering tumour heterogeneity. Sci Rep. 2017; 7: 39782. 10. Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nguyen LT, Uchida T, et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res. 2010; 70(6): 2339-2349. 11. Ding L, Xu Y, Zhang W, Deng Y, Si M, Du Y, et al. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 2010; 20(7): 784-793. 12. Shen Z-Y, Zhang Z-Z, Liu H, Zhao E-H, Cao H. miR- 375 inhibits the proliferation of gastric cancer cells by repressing ERBB2 expression. Exp Ther Med. 2014; 7(6): 1757-1761. 13. Sakamoto N, Naito Y, Oue N, Sentani K, Uraoka N, Oz HZ, et al. MicroRNA-148a is downregulated in gastric cancer, targets MMP7, and indicates tumor invasiveness and poor prognosis. Cancer Sci. 2014; 105(2): 236-243. 14. Zheng G, Xiong Y, Xu W, Wang Y, Chen F, Wang Z, et al. A two-microRNA signature as a potential biomarker for early gastric cancer. Oncol Lett. 2014; 7(3): 679-684. 15. Zheng B, Liang L, Wang C, Huang S, Cao X, Zha R, et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin Cancer Res. 2011; 17(24): 7574-7583. 16. Tu L, Zhao E, Zhao W, Zhang Z, Tang D, Zhang Y, et al. hsa-miR-376c-3p regulates gastric tumor growth both in vitro and in vivo. BioMed Res Int. 2016; 2016: 1-7. 17. Hung P-S, Chen C-Y, Chen W-T, Kuo C-Y, Fang W-L, Huang KH, et al. miR-376c promotes carcinogenesis and serves as a plasma marker for gastric carcinoma. PLos One. 2017; 12(5): e0177346. 18. Yu X, Song H, Xia T, Han S, Xiao B, Luo L, et al. Growth inhibitory effects of three miR-129 family members on gastric cancer. Gene. 2013; 532(1): 87-93. 19. Xu C, Shao Y, Xia T, Yang Y, Dai J, Luo L, et al. lncRNA-AC130710 targeting by miR-129-5p is upregulated in gastric cancer and associates with poor prognosis. Tumor Biol. 2014; 35(10): 9701-9706. 20. Wu H, Huang M, Lu M, Zhu W, Shu Y, Cao P, et al. Regulation of microtubule-associated protein tau (MAPT) by miR-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel. Cancer Chemother Pharmacol. 2013; 71(5): 1159-1171. 21. Oh H-K, Tan AL-k, Das K, Ooi C-H, Deng N-T, Tan IB, et al. Genomic loss of miR-486 regulates tumor progression and the OLFM4 antiapoptotic factor in gastric cancer. Clin Cancer Res. 2011; 17(9): 2657-2667. 22. Geng H, Li K, Pan Q, Tao S, Li C, Zhao H, et al. Identification and expression of several circular RNAs and knockdown of hsa_circ_0005556 exerts oncogenic functions by miR-767-5p in gastric cancer. Med Sci Monit. 2020; 26: e921163. 23. Bradburn S. How to perform the delta-delta Ct method? [Accessed July 7 2020] Available at: https:// toptipbio. com/delta-delta-ct-pcr/. 24. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York, NY, USA: Springer-Verlag, 2016. Retrieved from https://ggplot2.tidyverse.org. 25. Brierley J, Gospodarowicz MK, Wittekind CH, Editors. TNM Classification of Malignant Tumours, 8th ed. Oxford, Oxon, UK; John Wiley & Sons, Inc.; 2017. 26. Sexton RE, Al Hallak MN, Diab M, Azmi AS. Gastric cancer: A comprehensive review of current and future treatment strategies. Cancer Metastasis Rev. 2020; 39(4): 1179-1203. 27. Link A, Kupcinskas J. MicroRNAs as non-invasive diagnostic biomarkers for gastric cancer: Current insights and future perspectives. World J Gastroenterol. 2018; 24(30): 3313-3329. 28. Li Z, Liu Z-M, Xu B-H. A meta-analysis of the effect of microRNA-34a on the progression and prognosis of gastric cancer. Eur Rev Med Pharmacol Sci. 2018; 22(23): 8281-8287. 29. Wang Q-X, Zhu Y-Q, Zhang H, Xiao J. Altered miRNA expression in gastric cancer: A systematic review and meta-analysis. Cell Physiol Biochem. 2015; 35(3): 933-944. 30. Ben-Dayan MM, MacCarthy T, Schlecht NF, Belbin TJ, Childs G, Smith RV, et al. Cancer as the disintegration of robustness: Population-level variance in gene expression identifies key differences between tobacco- and HPV-associated oropharyngeal carcinogenesis. Arch Pathol Lab Med.. 2015; 139(11): 1362-1372. 31. Hooten NN, Fitzpatrick M, Wood WH 3rd, De S, Ejiogu N, Zhang Y, et al. Age-related changes in micro-RNA levels in serum. Aging (Albany NY). 2013; 5(10): 725-740. 32. Cui S, Zhang K, Li C, Chen J, Pan Y, Feng B, et al. Methylation-associated silencing of microRNA- 129-3p promotes epithelial-mesenchymal transition, invasion and metastasis of hepatocelluar cancer by targeting Aurora-A. Oncotarget. 2016; 7(47): 78009- 78028. 33. Xu Y, Deng Y, Yan X, Zhou T. Targeting miR-375 in gastric cancer. Expert Opin Ther Targets. 2011; 15(8): 961-972. 34. Bhatti I, Lee A, James V, Hall RI, Lund JN, Tufarelli C, et al. Knockdown of microRNA-21 inhibits proliferation and increases cell death by targeting programmed cell death 4 (PDCD4) in pancreatic ductal adenocarcinoma. J Gastrointest Surg. 2011; 15(1): 199-208. 35. Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z, et al. Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer. 2010; 127(12): 2870-2878. 36. Yan X-L, Luo Q-Y, Zhou S-N, Pan W-T, Zhang L, Yang D-J, et al. MicroRNA-375 reverses the expression of PD-L1 by inactivating the JAK2/STAT3 signaling pathways in gastric cancer. Clin Res Hepatol Gastroenterol. 2021; 45(5): 101574. 37. Lian S, Park J, Xia Y, Nguyen TT, Joo YE, Kim KK, et al. MicroRNA-375 functions as a tumor-suppressor gene in gastric cancer by targeting Recepteur d’Origine Nantais. Int J Mol Sci. 2016; 17(10): 1633. 38. Ni H, Qin H, Sun C, Liu Y, Ruan G, Guo Q, et al. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Res Ther. 2021; 12(1): 325. 39. Xia J, Guo X, Yan J, Deng K. The role of miR-148a in gastric cancer. J Cancer Res Clin Oncol. 2014; 140(9): 1451-1456. 40. Yu B, Lv X, Su L, Li J, Yu Y, Gu Q, et al. MiR-148a functions as a tumor suppressor by targeting CCKBR via inactivating STAT3 and Akt in human gastric cancer. PLoS One. 2016; 11(8): e0158961. 41. Mu Y-P, Tang S, Sun W-J, Gao W-M, Wang M, Su X-L. Association of miR-193b down-regulation and miR-196a up-regulation with clinicopathological features and prognosis in gastric cancer. Asian Pac J Cancer Prev. 2014; 15(20): 8893-8900. 42. Chen C, Zhang Y, Zhang L, Weakley SM, Yao Q. MicroRNA-196: Critical roles and clinical applications in development and cancer. J Cell Mol Med. 2011; 15(1): 14-23. 43. Skrzypski M, Czapiewski P, Goryca K, Jassem E, Wrywicz L, Pawlowski R, et al. Prognostic value of microRNA expression in operable non-small cell lung cancer patients. Br J Cancer. 2014; 110(4): 991-1000. 44. Filipska M, Skrzypski M, Czetyrbok K, Stokowy T, Stasilojc G, Supernat A, et al. MiR-192 and miR- 662 enhance chemoresistance and invasiveness of squamous cell lung carcinoma. Lung Cancer. 2018; 118: 111-118. 45. Loriot A, Van Tongelen A, Blanco J, Klaessens S, Cannuyer J, Van Baren N, et al. A novel cancergermline transcript carrying pro-metastatic miR- 105 and TET-targeting miR-767 induced by DNA hypomethylation in tumors. Epigenetics. 2014; 9(8): 1163-1171. 46. Zhang K, Guo L. MiR-767 promoted cell proliferation in human melanoma by suppressing CYLD expression. Gene. 2018; 641: 272-278. 47. Feng Y, Zhang L, Wu J, Khadka B, Fang Z, Gu J, et al. CircRNA circ_0000190 inhibits the progression of multiple myeloma through modulating miR-767- 5p/ MAPK4 pathway. J Exp Clin Cancer Res. 2019; 38(1): 54. 48. Liu H, Wu Y, Wang S, Jiang J, Zhang C, Jiang Y, et al. Circ-SMARCA5 suppresses progression of multiple myeloma by targeting miR-767-5p. BMC Cancer. 2019; 19(1): 937. 49. Zhang L, Geng Z, Wan Y, Meng F, Meng X, Wang L. Functional analysis of miR-767-5p during the progression of hepatocellular carcinoma and the clinical relevance of its dysregulation. Histochem Cell Biol. 2020; 154(2): 231-243. 50. Xiang Z, Xu C, Wu G, Liu B, Wu D. CircRNA-UCK2 increased TET1 inhibits proliferation and invasion of prostate cancer cells via sponge miRNA-767-5p. Open Med (Wars). 2019; 14(1): 833-842. 51. Zhang J, Xu S, Xu J, Li Y, Zhang J, Zhang J, et al. miR 767 5p inhibits glioma proliferation and metastasis by targeting SUZ12. Oncol Rep. 2019; 42(1): 55-66.



Number 27
VOL. 27 (2), 2024
Number 27
VOL. 27 (1), 2024
Number 26
Number 26 VOL. 26(2), 2023 All in one
Number 26
VOL. 26(2), 2023
Number 26
VOL. 26, 2023 Supplement
Number 26
VOL. 26(1), 2023
Number 25
VOL. 25(2), 2022
Number 25
VOL. 25 (1), 2022
Number 24
VOL. 24(2), 2021
Number 24
VOL. 24(1), 2021
Number 23
VOL. 23(2), 2020
Number 22
VOL. 22(2), 2019
Number 22
VOL. 22(1), 2019
Number 22
VOL. 22, 2019 Supplement
Number 21
VOL. 21(2), 2018
Number 21
VOL. 21 (1), 2018
Number 21
VOL. 21, 2018 Supplement
Number 20
VOL. 20 (2), 2017
Number 20
VOL. 20 (1), 2017
Number 19
VOL. 19 (2), 2016
Number 19
VOL. 19 (1), 2016
Number 18
VOL. 18 (2), 2015
Number 18
VOL. 18 (1), 2015
Number 17
VOL. 17 (2), 2014
Number 17
VOL. 17 (1), 2014
Number 16
VOL. 16 (2), 2013
Number 16
VOL. 16 (1), 2013
Number 15
VOL. 15 (2), 2012
Number 15
VOL. 15, 2012 Supplement
Number 15
Vol. 15 (1), 2012
Number 14
14 - Vol. 14 (2), 2011
Number 14
The 9th Balkan Congress of Medical Genetics
Number 14
14 - Vol. 14 (1), 2011
Number 13
Vol. 13 (2), 2010
Number 13
Vol.13 (1), 2010
Number 12
Vol.12 (2), 2009
Number 12
Vol.12 (1), 2009
Number 11
Vol.11 (2),2008
Number 11
Vol.11 (1),2008
Number 10
Vol.10 (2), 2007
Number 10
10 (1),2007
Number 9
1&2, 2006
Number 9
3&4, 2006
Number 8
1&2, 2005
Number 8
3&4, 2004
Number 7
1&2, 2004
Number 6
3&4, 2003
Number 6
1&2, 2003
Number 5
3&4, 2002
Number 5
1&2, 2002
Number 4
Vol.3 (4), 2000
Number 4
Vol.2 (4), 1999
Number 4
Vol.1 (4), 1998
Number 4
3&4, 2001
Number 4
1&2, 2001
Number 3
Vol.3 (3), 2000
Number 3
Vol.2 (3), 1999
Number 3
Vol.1 (3), 1998
Number 2
Vol.3(2), 2000
Number 2
Vol.1 (2), 1998
Number 2
Vol.2 (2), 1999
Number 1
Vol.3 (1), 2000
Number 1
Vol.2 (1), 1999
Number 1
Vol.1 (1), 1998

 

 


 About the journal ::: Editorial ::: Subscription ::: Information for authors ::: Contact
 Copyright © Balkan Journal of Medical Genetics 2006