
A PILOT STUDY OF ANXA2, MED12, CALM1 AND MAPK1 GENE VARIANTS IN PRIMARY HYPERPARATHYROIDISM Chorti A#1, Achilla C#2, Siasiaridis A2, Aristeidis I1, Cheva A3, Theodosios Papavramidis T##1, Chatzikyriakidou A##*2,4 *Corresponding Author: *Corresponding Author: Anthoula Chatzikyriakidou, Laboratory of Medical Biology - Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University, 54124, Thessaloniki, Greece. Tel: +30 2310999013, Email: chatzikyra@auth.gr page: 33 download article in pdf format
|
Abstract
Primary hyperparathyroidism (PHPT) is a common
endocrine disorder characterized by the overactivity of the
parathyroid glands. While a few genes have been linked to
a predisposition for PHPT, the genetic foundation of the
disease remains unclear, despite it being the third most
prevalent endocrine disorder. This pilot study aimed to
investigate, for the first time, the potential association be-
tween specific variants in Annexin A2 (ANXA2-rs7170178,
rs17191344, rs11633032), Mediator Complex Subunit
12 (MED12-rs1057519912), Calmodulin 1 (CALM1-
rs12885713), and Mitogen-Activated Protein Kinase 1
(MAPK1-rs1057519911) genes with PHPT. Previous ex-
pression analyses have indicated that the proteins related
to these genes are involved in parathyroid adenomas or
PTH signaling. Fifty unrelated PHPT patients and an equal
number of healthy controls were enrolled in the study.
Genotyping was conducted using the polymerase chain
reaction - restriction fragment length polymorphism as-
say. Statistical analysis was performed to assess the con-
nection between genetic variants and PHPT. Our results
revealed no significant differences in genotypes’ or alleles’
distributions of any of the studied variants between PHPT
patients and controls. These findings suggest that these
variants may not be linked to PHPT in the studied popula-
tion. This pilot study, focusing on a Caucasian group of
PHPT patients, contributes to the existing genetic data for
future meta-analyses, which will provide a more precise
definition of the genetic factors associated with PHPT
susceptibility worldwide.
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|