
CHARACTERIZATION OF SMALL SUPERNUMERARY MARKER CHROMOSOMES BY A SIMPLE MOLECULAR AND
MOLECULAR CYTOGENETICS APPROACH
Liehr T1,*, Trifonov V1,2, Polityko A1,3, Brecevic L1,4, Mrasek K1, Weise A1, Ewers E1,
Reich D1, Iourov I1,5, Mkrtchyan H1,6, Manvelyan M1,6, Kosyakova N1,7
*Corresponding Author: Dr. Thomas Liehr, Institut für Humangenetik und Anthropologie, Kollegiengasse 10, D-07743 Jena, Germany; Tel.: +49-3641-935533; Fax: 0049-3641-935582; E-mail: i8lith@mti.uni-jena.de
page: 33
|
INTRODUCTION
Small supernumerary marker chromosomes (sSMC) are present in ~2.7 million people worldwide [1]. They are defined as structurally abnormal chromosomes that cannot be identified or characterized unambiguously by conventional banding cytogenetics alone; they are generally equal in size or smaller than a chromosome 20 in the same metaphase spread. Additionally, sSMC can be present in an otherwise normal karyotype, in a numerically abnormal karyotype (e.g., Turner’s or Down’s syndromes) or in a structurally abnormal but balanced karyotype with or without ring chromosome formation. If detected in banding cytogenetics, they are a major problem as they are too small to be characterized for their chromosomal origin or content by traditional banding techniques. Molecular cytogenetic techniques are necessary for their characterization [2]. Cases with a de novo sSMC, particularly those that are prenatally ascertained, are not easy to correlate with a clinical outcome [3]. It has been established that substantial parts of sSMC lead to four specific syndromes, i.e., Pallister-Killian [= i(12p)], isochromosome 18p [i(18p)], cat-eye [i(22p~q)] and derivative chromosome 22 [der(22) t(11;22)] syndromes [2]. In general, the risk for an abnormal phenotype in prenatally ascertained de novo cases with sSMC is considered to be ~13% [4]. This has been refined to 7% (for sSMC from chromosomes 13, 14, 21 or 22) and 28% (for all non-acrocentric autosomes) [5] and has recently been suggested to be 26-30% [1,6]. Also, generally speaking, sSMC transmitted by normal sSMC carriers to their progeny are not correlated with clinical problems [7], although exceptions have been described [8].
|
|
|
|



 |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|
|