
SINGLE-NUCLEOTIDE POLYMORPHISMS IN EXONIC
AND PROMOTER REGIONS OF TRANSCRIPTION
FACTORS OF SECOND HEART FIELD ASSOCIATED
WITH SPORADIC CONGENITAL CARDIAC ANOMALIES Wang E, Fan X, Nie Y, Zheng Z, Hu S, *Corresponding Author: Shengshou Hu M. D., Cardiac Surgery Department, Fuwai Hospital, Chinese
Academy of Medical Sciences, Peking Union Medical College, Xicheng District, Beijing, 100037,
China, Tel & Fax: 86-010-88322325 E-mail: shengshouh@sina.cn page: 39
|
REFERENCES
1. Hoffman JI, Kaplan S. The incidence of congenital
heart disease. J Am Coll Cardiol. 2002; 39(12): 1890-
900.
2. Winkleby M, Sundquist K, Cubbin C. Inequities in
CHD incidence and case fatality by neighborhood
deprivation. Am J Prev Med. 2007; 32(2): 97-106.
3. Srivastava D. Making or breaking the heart: from
lineage determination to morphogenesis. Cell. 2006;
126(6): 1037-48.
4. Rasmussen TL, Ma Y, Park CY, Harriss J, Pierce SA,
Dekker JD, et al. Smyd1 facilitates heart development
by antagonizing oxidative and ER stress responses.
PLoS One. 2015; 10(3): e0121765.
5. Srivastava D, Olson EN. A genetic blueprint for cardiac
development. Nature. 2000; 407(6081):221-6.
6. Tsuchihashi T, Maeda J, Shin CH, Ivey KN, Black
BL, Olson EN, et al. Hand2 function in second heart
field progenitors is essential for cardiogenesis. Developmental
Biology. 2011; 351(1): 62-9.
7. Phan D, Rasmussen TL, Nakagawa O, McAnally J,
Gottlieb PD, Tucker PW, et al. BOP, a regulator of
right ventricular heart development, is a direct transcriptional
target of MEF2C in the developing heart.
Development. 2005; 132(11): 2669-78.
8. Vong L, Bi W, O’Connor-Halligan KE, Li C, Cserjesi
P, Schwarz JJ. MEF2C is required for the normal allocation
of cells between the ventricular and sinoatrial
precursors of the primary heart field. Developmental
Dynamics. 2006; 235(7):1809-21.
9. Takeuchi JK, Mileikovskaia M, Koshiba-Takeuchi K,
Heidt AB, Mori AD, Arruda EP, et al. Tbx20 dosedependently
regulates transcription factor networks
required for mouse heart and motoneuron development.
Development. 2005; 132(10): 2463-74.
10. Huang RT, Wang J, Xue S, Qiu XB, Shi HY, Li RG,
et al. TBX20 loss-of-function mutation responsible
for familial tetralogy of Fallot or sporadic persistent
truncus arteriosus. Int J Med Sci. 2017; 14(4): 323-32.
11. Lu CX, Wang W, Wang Q, Liu XY, Yang YQ. A Novel
MEF2C Loss-of-Function Mutation Associated with
Congenital Double Outlet Right Ventricle. Pediatr
Cardiol. 2018; 39(4): 794-804.
12. Fan LL, Ding DB, Huang H, Chen YQ, Jin JY, Xia
K, et al. A de novo mutation of SMYD1 (p.F272L)
is responsible for hypertrophic cardiomyopathy in a
Chinese patient. Clin Chem Lab Med. 2019; 57(4):
532-9.
13. Kassab K, Hariri H, Gharibeh L, Fahed AC, Zein M,
El-Rassy I, et al. GATA5 mutation homozygosity
linked to a double outlet right ventricle phenotype in
a Lebanese patient. Mol Genet Genomic Med. 2016;
4(2): 160-71.
14. Wang E, Nie Y, Fan X, Zheng Z, Hu S. Intronic Polymorphisms
in Gene of Second Heart Field as Risk
Factors for Human Congenital Heart Disease in a
Chinese Population. DNA Cell Biol. 2019; 38(6):
521-31.
15. Wang E, Wang Z, Liu S, Gu H, Gong D, Hua K, et
al. Polymorphisms of VEGF, TGFbeta1, TGFbetaR2
and conotruncal heart defects in a Chinese population.
Mol Biol Rep. 2014; 41(3): 1763-70.
16. Topf A, Griffin HR, Glen E, Soemedi R, Brown DL,
Hall D, et al. Functionally significant, rare transcription
factor variants in tetralogy of Fallot. PLoS One.
2014; 9(8): e95453.
17. Hempel M, Casar Tena T, Diehl T, Burczyk MS,
Strom TM, Kubisch C, et al. Compound heterozygous
GATA5 mutations in a girl with hydrops fetalis,
congenital heart defects and genital anomalies. Hum
Genet. 2017; 136(3): 339-46.
18. Edmondson DG, Lyons GE, Martin JF, Olson EN.
Mef2 gene expression marks the cardiac and skeletal
muscle lineages during mouse embryogenesis.
Development. 1994; 120(5): 1251-63.
19. Dodou E, Verzi MP, Anderson JP, Xu SM, Black
BL. Mef2c is a direct transcriptional target of ISL1
and GATA factors in the anterior heart field during
mouse embryonic development. Development. 2004;
131(16): 3931-42.
20. Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe
EK, Harriss JV, et al. Bop encodes a muscle-restricted
protein containing MYND and SET domains and is
essential for cardiac differentiation and morphogenesis.
Nat Genet. 2002; 31: 25-32.
21. Tracy C, Warren JS, Szulik M, Wang L, Garcia J, Makaju
A, et al. The Smyd Family of Methyltransferases:
Role in Cardiac and Skeletal Muscle Physiology and
Pathology. Curr Opin Physiol. 2018; 1: 140-52. 22. Laforest B, Nemer M. GATA5 interacts with GATA4
and GATA6 in outflow tract development. Dev Biol.
2011; 358(2): 368-78.
23. Shi LM, Tao JW, Qiu XB, Wang J, Yuan F, Xu L,
et al. GATA5 loss-of-function mutations associated
with congenital bicuspid aortic valve. Int J Mol Med.
2014; 33(5): 1219-26.
24. Wei D, Bao H, Zhou N, Zheng GF, Liu XY, Yang YQ.
GATA5 loss-of-function mutation responsible for the
congenital ventriculoseptal defect. Pediatr Cardiol.
2013; 34(3): 504-11.
25. Huang RT, Xue S, Xu YJ, Zhou M, Yang YQ. Somatic
GATA5 mutations in sporadic tetralogy of Fallot. Int
J Mol Med. 2014; 33(5):1227-35.
26. Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, et
al. Isl1 identifies a cardiac progenitor population that
proliferates prior to differentiation and contributes a
majority of cells to the heart. Dev Cell. 2003; 5(6):
877-89.
27. Cai CL, Zhou W, Yang L, Bu L, Qyang Y, Zhang X, et
al. T-box genes coordinate regional rates of proliferation
and regional specification during cardiogenesis.
Development. 2005; 132(10): 2475-87.
28. Posch MG, Gramlich M, Sunde M, Schmitt KR,
Lee SH, Richter S, et al. A gain-of-function TBX20
mutation causes congenital atrial septal defects, patent
foramen ovale and cardiac valve defects. J Med
Genet. 2010; 47(4): 230-5.
29. Pan Y, Geng R, Zhou N, Zheng GF, Zhao H, Wang J,
et al. TBX20 loss-of-function mutation contributes
to double outlet right ventricle. Int J Mol Med. 2015;
35(4): 1058-66.
30. Monroy-Munoz IE, Perez-Hernandez N, Rodriguez-
Perez JM, Munoz-Medina JE, Angeles-Martinez J,
Garcia-Trejo JJ, et al. Novel mutations in the transcriptional
activator domain of the human TBX20
in patients with atrial septal defect. Biomed Res Int.
2015; 2015: 718786.
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|