PCSK9 GENE PARTICIPATES IN THE DEVELOPMENT OF PRIMARY DYSLIPIDEMIAS
Matías-Pérez D1, Pérez-Santiago AD1, Sánchez Medina MA1, Alpuche Osorno JJ2, García-Montalvo IA1
*Corresponding Author: Dr. Iván A. García-Montalvo, Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca City, Oaxaca, México. Av. Víctor Bravo Ahuja No. 125, Esq. Calzada Tecnológico Oaxaca, Oaxaca. Tel./Fax: +52-951-501-5016. E-mail: ivan.garcia@itoaxaca.edu.mx
page: 5

REFERENCES

1. Díaz-Aragón A, Fernández-Barros CL, Enciso- Muñoz JM, Ceballos-Reyes G, Gutiérrez-Salmeán G, León Hernández FJ, et al.e. Posicionamiento en torno al diag-nóstico y tratamiento de las dislipidemias. Rev Mex Cardiol. 2018; 29(3): 148-168. 2. World Health Organization. Cardiovascular diseases (CVDs). [http://www.who.int/news-room/fact-sheets/ detail/cardiovasculard-diseases-(cvds); accessed June 13 2020]. 3. Barquera S, Pedroza-Tobías A, Medina C, Hernández- Barrera L, Bibbins-Domingo K, Lozano R, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 2015; 46(5): 328-338. 4. Nowbar AN, Gitto M, Howard JP, Francis DP, Al- Lamee R. Mortality from ischemic heart disease. Circ Cardiovasc Qual Outcomes. 2019; 12(6): e005375. 5. Martinez-Sanchez C, Borrayo G, Carrillo J, Juarez U, Quintanilla J, Jerjes-Sanchez C. Clinical management and hospital outcomes of acute coronary syndrome patients in Mexico: The Third National Registry of Acute Coronary Syndromes (RENASICA III). Arch Cardiol México. 2016; 86(3): 221-232. 6. Canalizo-Miranda E, Favela-Pérez EA, Salas-Anaya JA, Gómez-Díaz R, Jara-Espino R, Del L, et al. Guía de práctica clínica Diagnóstico y tratamiento de las dislipidemias. Rev Med Inst Mex Seguro Soc. 2013; 51(6): 700-709. 7. McEvoy JW, Whelton SP, Blumenthal RS. Dyslipidemia. In: Bakris GL, Sorrentino MJ, Editors. Hypertension: A Companion to Braunwald’s Heart Disease, 3rd ed. Chicago, IL, USA: Elsevier, 2018: 353-360. 8. Urbina EM, Daniels SR. Hyperlipidemia. In: Slap GB, Editor. Adolescent Medicine. Philadelphia, PA, USA: Mosby, 2008: 90-96. 9. Hurtubise J, McLellan K, Durr K, Onasanya O, Nwabuko D, Ndisang JF. The different facets of dyslipidemia and hypertension in atherosclerosis. Curr Atheroscler Rep. [Internet] 2016; 18(12): 82. 10. Matías-Pérez D, Pérez-Campos E, Antonio García- Montalvo I, Antonio I, Montalvo G. A genetic view of familial hypercholesterolemia. Nutr Hosp. 2015; 32(6): 2421-2426. 11. Smith LC, Massey JB, Sparrow JT, Gotto AM, Pownall HJ. Structure and dynamics of human plasma lipoproteins. In: Bakris GL, Sorrentino MJ, Editors. Supramolecular Structure and Function. Boston, MA, USA: Springer US; 1983; 205-244. 12. Barter PJ, Brewer HB, Chapman MJ, Hennekens CH, Rader DJ, Tall AR. Cholesteryl ester transfer protein. Arterioscler Thromb Vasc Biol. 2003; 23(2): 160-167. 13. Yamashita T, Lakota K, Taniguchi T, Yoshizaki A, Sato S, Hong W, et al. An orally-active adiponectin receptor agonist mitigates cutaneous fibrosis, inflammation and microvascular pathology in a murine model of systemic sclerosis. Sci Rep. 2018; 8(1): 11843. 14. Huang Q, Qin L, Dai S, Zhang H, Pasula S, Zhou H, et al. AIP1 suppresses atherosclerosis by limiting hyperlipidemia-induced inflammation and vascular endothelial dysfunction. Arterioscler Thromb Vasc Biol. 2013; 33(4): 795-804. 15. Kuivenhoven JA, Hegele RA. Mining the genome for lipid genes. Biochim Biophys Acta. 2014; 1842(10): 1993-2009. 16. Varret M, Rabès JP, Saint-Jore B, Cenarro A, Marinoni JC, Civeira F, et al. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32. Am J Hum Genet. 1999; 64(5): 1378-1387. 17. Akioyamen LE, Genest J, Shan SD, Reel RL, Albaum JM, Chu A, et al. Estimating the prevalence of heterozygous familial hypercholesterolaemia: A systematic review and meta-analysis. BMJ Open. 2017; 7(9): e016461. 18. Nassoury N, Blasiole DA, Tebon Oler A, Benjannet S, Hamelin J, Poupon V, et al. The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR. Traffic. 2007; 8(6): 718-732. 19. Luo Y, Warren L, Xia D, Jensen H, Sand T, Petras S, et al. Function and distribution of circulating human PCSK9 expressed extrahepatically in transgenic mice. J Lipid Res. 2009; 50(8): 1581-1588. 20. Dijk W, Le May C, Cariou B. Beyond LDL: What role for PCSK9 in triglyceride-rich lipoprotein metabolism? Trends Endocrinol Metab. 2018; 29(6): 420-434. 21. Lalanne F, Lambert G, Amar MJA, Chétiveaux M, Zaïr Y, Jarnoux AL, et al. Wild-type PCSK9 inhibits LDL clearance but does not affect apoB-containing lipoprotein production in mouse and cultured cells. J Lipid Res. 2005; 46(6): 1312-1319. 22. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Bélanger Jasmin S, Stifani S, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA. 2003; 100(3): 928-933. 23. Gustafsen C, Kjolby M, Nyegaard M, Mattheisen M, Lundhede J, Buttenschøn H, et al. The hypercho lesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 2014; 19(2): 310-318. 24. Schmidt RJ, Beyer TP, Bensch WR, Qian YW, Lin A, Kowala M, et al. Secreted proprotein convertase subtilisin/ kexin type 9 reduces both hepatic and extrahepatic low-density lipoprotein receptors in vivo. Biochem Biophys Res Commun. 2008; 370(4): 634-640. 25. Marian AJ. PCSK9 as a therapeutic target in atherosclerosis. Curr Atheroscler Rep. 2010; 12(3): 151-154. 26. Seidah NG. PCSK9 as a therapeutic target of dyslipidemia. Expert Opin Ther Targets. 2009; 13(1): 19-28. 27. Sabatine MS. Proprotein convertase subtilisin/ kexin type 9 (PCSK9) inhibitors: Comparing and contrasting guidance across the Atlantic. Eur Heart J. 2017; 38(29): 2256-2258. 28. Li S, Zhang Y, Xu R-X, Guo Y-L, Zhu C-G, Wu N-Q, et al. Proprotein convertase subtilisin-kexin type 9 as a biomarker for the severity of coronary artery disease. Ann Med. 2015; 47(5): 386-393. 29. Alonso R, Mata P, Muñiz O, Fuentes-Jimenez F, Díaz JL, Zambón D, et al. PCSK9 and lipoprotein (a) levels are two predictors of coronary artery calcification in asymptomatic patients with familial hypercholesterolemia. Atherosclerosis. 2016; 254: 249-253. 30. Kim JH. Letter: Serum levels of PCSK9 are associated with coronary angiographic severity in patients with acute coronary syndrome (Diabetes Metab J. 2018;42:207-14). Diabetes Metab J. 2018; 42(4): 348-349. 31. Tang Z, Li T, Peng J, Zheng J, Li T, Liu L, et al. PCSK9: A novel inflammation modulator in atherosclerosis? J Cell Physiol. 2019;234(3): 2345-2355. 32. Hopkins PN, Defesche J, Fouchier SW, Bruckert E, Luc G, Cariou B, et al. Characterization of autosomal dominant hypercholesterolemia caused by PCSK9 cain of function mutations and its specific treatment with alirocumab, a PCSK9 monoclonal antibody. Circ Cardiovasc Genet. 2015; 8(6): 823-831. 33. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005; 37(2): 161-165. 34. Miyake Y, Kimura R, Kokubo Y, Okayama A, Tomoike H, Yamamura T, et al. Genetic variants in PCSK9 in the Japanese population: Rare genetic variants in PCSK9 might collectively contribute to plasma LDL cholesterol levels in the general population. Atherosclerosis. 2008; 196(1): 29-36. 35. Zhao Z, Tuakli-Wosornu Y, Lagace TA, Kinch L, Grishin NV, Horton JD, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006; 79(3): 514-523. 36. Abifadel M, Varret M, Rabès J-P, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003; 34(2): 154-156. 37. Timms KM, Wagner S, Samuels ME, Forbey K, Goldfine H, Jammalapati S, et al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum Genet. 2004; 114(4): 349-353. 38. Hunt SC, Hopkins PN, Bulka K, McDermott MT, Thorne TL, Wardell BB, et al. Genetic localization to chromosome 1p32 of the third locus for familial hypercholesterolemia in a Utah kindred. Arterioscler Thromb Vasc Biol. 2000; 20(4): 1089-1093. 39. Leren TP. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet. 2004; (4): 419-422. 40. Sun XM, Eden ER, Tosi I, Neuwirth CK, Wile D, Naoumova RP, et al. Evidence for effect of mutant PCSK9 on apolipoprotein B secretion as the cause of unusually severe dominant hypercholesterolaemia. Hum Mol Genet. 2005; 14(9): 1161-1169. 41. Bourbon M, Alves AC, Medeiros AM, Silva S, Soutar AK. Familial hypercholesterolaemia in Portugal. Atherosclerosis. 2008; 196(2): 633-642. 42. Allard D, Amsellem S, Abifadel M, Trillard M, Devillers M, Luc G, et al. Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia. Hum Mutat. 2005; 26(5): 497. 43. Homer VM, Marais AD, Charlton F, Laurie AD, Hurndell N, Scott R, et al. Identification and characterization of two non-secreted PCSK9 mutants associated with familial hypercholesterolemia in cohorts from New Zealand and South Africa. Atherosclerosis. 2008; 196(2): 659-666. 44. Abifadel M, Rabès J-P, Devillers M, Munnich A, Erlich D, Junien C, et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat. 2009; 30(4): 520-529. 45. Iacocca MA, Wang J, Sarkar S, Dron JS, Lagace T, McIntyre AD, et al. Whole-gene duplication of PCSK9 as a novel genetic mechanism for severe familial hypercholesterolemia. Can J Cardiol. 2018; 34(10): 1316-1324. 46. Zambrano T, Hirata MH, Cerda Á, Dorea EL, Pinto GA, Gusukuma MC, et al. Impact of 3’UTR genetic variants in PCSK9 and LDLR genes on plasma lipid traits and response to atorvastatin in Brazilian subjects: A pilot study. Int J Clin Exp Med. 2015; 8(4): 5978-5988. 47. Robles-Osorio L, Huerta-Zepeda A, Ordóñez ML, Canizales-Quinteros S, Díaz-Villaseñor A, Gutiérrez- Aguilar R, et al. Genetic heterogeneity of autosomal dominant hypercholesterolemia in Mexico. Arch Med Res. 2006; 37(1): 102-108. 48. Mehta R, Zubirán R, Martagón AJ, Vazquez-Cárdenas A, Segura-Kato Y, Tusié-Luna MT, et al. The panorama of familial hypercholesterolemia in Latin America: A systematic review. J Lipid Res. 2016; 57(12): 2115-2129. 49. Garg A, Fazio S, Duell PB, Baass A, Udata C, Joh T, et al. Molecular characterization of familial hypercholesterolemia in a North American cohort. J Endocr Soc. 2020; 4(1): 1-16. 50. Sánchez-Hernández RM, Tugores A, Nóvoa FJ, Brito- Casillas Y, Expósito-Montesdeoca AB, Garay P, et al. The island of Gran Canaria: A genetic isolate for familial hypercholesterolemia. J Clin Lipidol. 2019; 13(4): 618-626. 51. Abifadel M, Rabès JP, Jambart S, Halaby G, Gannagé- Yared MH, Sarkis A, et al. The molecular basis of familial hypercholesterolemia in Lebanon: Spectrum of LDLR mutations and role of PCSK9 as a modifier gene. Hum Mutat. 2009;30(7): E682-E691. 52. Yang KC, Su YN, Shew JY, Yang KY, Tseng WK, Wu CC, et al. LDLR and ApoB are major genetic causes of autosomal dominant hypercholesterolemia in a taiwanese population. J Formos Med Assoc. 2007; 106(10): 799-807. 53. Pisciotta L, Oliva CP, Cefalù AB, Noto D, Bel-locchio A, Fresa R, et al. Additive effect of mutations in LDLR and PCSK9 genes on the phenotype of familial hypercholesterolemia. Atherosclerosis. 2006; 186(2): 433-440. 54. Noguchi T, Katsuda S, Kawashiri M-A, Tada H, Nohara A, Inazu A, et al. The E32K variant of PCSK9 exacerbates the phenotype of familial hypercholesterolaemia by increasing PCSK9 function and concentration in the circulation. Atherosclerosis. 2010; 210(1): 166-172. 55. Roche-Molina M, Sanz-Rosa D, Cruz FM, García- Prieto J, López S, Abia R, et al. Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9. Arterioscler Thromb Vasc Biol. 2015; 35(1): 50-59. 56. Bjørklund MM, Hollensen AK, Hagensen MK, Dagnæs-Hansen F, Christoffersen C, Mikkelsen JG, et al. Induction of atherosclerosis in mice and hamsters without germline genetic engineering. Circ Res. 2014; 114(11): 1684-1689. 57. Goettsch C, Hutcheson JD, Hagita S, Rogers MA, Creager MD, Pham T, et al. A single injection of gain-of-function mutant PCSK9 adeno-associated virus vector induces cardiovascular calcification in mice with no genetic modification. Atherosclerosis. 2016; 251: 109-118. 58. Denis M, Marcinkiewicz J, Zaid A, Gauthier D, Poirier S, Lazure C, et al. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation. 2012; 125(7): 894-901. 59. Al-Mashhadi RH, Sørensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, et al. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med. 2013; 5(166): 1-10. 60. Hedayat AF, Park K-H, Kwon T-G, Woollard JR, Jiang K, Carlson DF, et al. Peripheral vascular atherosclerosis in a novel PCSK9 gain-of-function mutant Ossabaw miniature pig model. Transl Res. 2018; 192: 30-45. 61. Miller M, Kwiterovich PO. Isolated low HDLcholesterol as an important risk factor for coronary heart disease. Eur Heart J. 1990; 11(suppl H): 9-14. 62. Puntoni M, Sbrana F, Bigazzi F, Sampietro T. Tangier disease: Epidemiology, pathophysiology, and management. Am J Cardiovasc Drugs. 2012; 12(5): 303-311. 63. Savel J, Lafitte M, Pucheu Y, Pradeau V, Tabarin A, Couffinhal T. Very low levels of HDL cholesterol and atherosclerosis, a variable relationship--a review of LCAT deficiency. Vasc Health Risk Manag. 2012; 8: 357-361. 64. Yuan F, Guo L, Park KH, Woollard JR, Taek-Geun K, Jiang K, et al. Ossabaw pigs with a PCSK9 fainof- function mutation develop accelerated coronary atherosclerotic lesions: A novel model for preclinical studies. J Am Heart Assoc. 2018; 7(6): e006207. 65. Duff CJ, Hooper NM. PCSK9: An emerging target for treatment of hypercholesterolemia. Expert Opin Ther Targets. 2011; 15(2): 157-168. 66. Soria LF, Ludwig EH, Clarke HR, Vega GL, Grundy SM, McCarthy BJ. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci USA. 1989; 86(2): 587-591. 67. Myant NB. Familial defective apolipoprotein B-100: A review, including some comparisons with familial hypercholesterolaemia. Atherosclerosis. 1993; 104(1- 2): 1-18. 68. Dugaiczyk A, Haron JA, Stone EM, Dennison OE, Rothblum KN, Schwartz RJ. Cloning and sequencing of a deoxyribonucleic acid copy of glyceraldehyde- 3-phosphate dehydrogenase messenger ribonucleic acid isolated from chicken muscle. Biochemistry. 1983; 22(7): 1605-1613. 69. Eden ER, Naoumova RP, Burden JJ, McCarthy MI, Soutar AK. Use of homozygosity mapping to identify a region on chromosome 1 bearing a defective gene that causes autosomal recessive homozygous hypercholesterolemia in two unrelated families. Am J Hum Genet. 200; 68(3): 653-660. 70. Soutar AK, Naoumova RP, Traub LM. Genetics, clinical phenotype, and molecular cell biology of autosomal recessive hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2003; 23(11): 1963-1970. 71. Canizales-Quinteros S, Aguilar-Salinas CA, Huertas- Vázquez A, Ordóñez-Sánchez ML, Rodríguez-Torres M, Venturas-Gallegos JL, et al. A novel ARH splice site mutation in a Mexican kindred with autosomal recessive hypercholesterolemia. Hum Genet. 2005; 116(1-2): 114-120. 72. Harada K, Miyamoto Y, Morisaki H, Ohta N, Yamanaka I, Kokubo Y, et al. A novel Thr56Met mutation of the autosomal recessive hypercholesterolemia gene associated with hypercholesterolemia. J Atheroscler Thromb. 2010; 17(2): 131-140. 73. Awan Z, Choi HY, Stitziel N, Ruel I, Bamimore MA, Husa R, et al. APOE p.Leu167del mutation in familial hypercholesterolemia. Atherosclerosis. 2013; 231(2): 218-222. 74. Sharifi M, Futema M, Nair D, Humphries SE. Polygenic hypercholesterolemia and cardiovascular disease risk. Curr Cardiol Rep. 2019; 21(6): 43. 75. Stoll M, Dell’Oca N. Genética de la hipercolesterolemia familiar. Rev Urug Cardiol. 2019; 34(3): 324-332. 76. Bourbon M, Alves AC, Sijbrands EJ. Low-density lipoprotein receptor mutational analysis in diagnosis of familial hypercholesterolemia. Curr Opin Lipidol. 2017; 8(2): 120-129. 77. Graham CA, McIlhatton BP, Kirk CW, Beattie ED, Lyttle K, Hart P, et al. Genetic screening protocol for familial hypercholesterolemia which includes splicing defects gives an improved mutation detection rate. Atherosclerosis. 2005; 182(2): 331-340. 78. Nose D, Hori M, Miyamoto Y, Imaizumi S, Harada- Shiba M, Saku K, et al. Discontinuation of LDL apheresis with evolocumab in an FH patient with a duplication of exon 2-6 in the LDLR gene. J Cardiol Cases. 2019; 19(2): 55-58. 79. Cheng S, Wu Y, Wen W, An M, Gao Y, Wang L, et al. Independent severe cases of heterozygous familial hypercholesterolemia caused by the W483X and novel W483G mutations in the low-density lipoprotein receptor gene that were clinically diagnosed as homozygous cases. Genet Test Mol Biomarkers. 2019; 23(6): 401-408. 80. Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG. Hyperlipidemia in Coronary Heart Disease II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973; 52(7): 1544-1568. 81. Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000; 290(5497): 1771-1775. 82. Rios J, Stein E, Shendure J, Hobbs HH, Cohen JC. Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia. Hum Mol Genet. 2010; 19(22): 4313-4318. 83. Lee MH, Lu K, Hazard S, Yu H, Shulenin S, Hidaka H, et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet. 2001; 27(1): 79-83. 84. Soumian S, Albrecht C, Davies AH, Gibbs RG. ABCA1 and atherosclerosis. Vasc Med. 2005; 10(2): 109-119. 85. Olson MV. Human genetic individuality. Annu Rev Genomics Hum Genet. 2012; 13: 1-27. 86. Ho Hong S, Rhyne J, Zeller K, Miller M. Novel ABCA1 compound variant associated with HDL cholesterol deficiency. Biochim Biophys Acta. 2002; 1587(1): 60-64. 87. Ahmadzadeh A, Azizi F. Genes Associated with low serum high-density lipoprotein cholesterol. Arch Iran Med. 2014; 17(6): 444-450. 88. Sabatine MS. PCSK9 inhibitors: Clinical evidence and implementation. Nat Rev Cardiol. 2019; 16(3): 155-165.



Number 26
Number 26 VOL. 26(2), 2023 All in one
Number 26
VOL. 26(2), 2023
Number 26
VOL. 26, 2023 Supplement
Number 26
VOL. 26(1), 2023
Number 25
VOL. 25(2), 2022
Number 25
VOL. 25 (1), 2022
Number 24
VOL. 24(2), 2021
Number 24
VOL. 24(1), 2021
Number 23
VOL. 23(2), 2020
Number 22
VOL. 22(2), 2019
Number 22
VOL. 22(1), 2019
Number 22
VOL. 22, 2019 Supplement
Number 21
VOL. 21(2), 2018
Number 21
VOL. 21 (1), 2018
Number 21
VOL. 21, 2018 Supplement
Number 20
VOL. 20 (2), 2017
Number 20
VOL. 20 (1), 2017
Number 19
VOL. 19 (2), 2016
Number 19
VOL. 19 (1), 2016
Number 18
VOL. 18 (2), 2015
Number 18
VOL. 18 (1), 2015
Number 17
VOL. 17 (2), 2014
Number 17
VOL. 17 (1), 2014
Number 16
VOL. 16 (2), 2013
Number 16
VOL. 16 (1), 2013
Number 15
VOL. 15 (2), 2012
Number 15
VOL. 15, 2012 Supplement
Number 15
Vol. 15 (1), 2012
Number 14
14 - Vol. 14 (2), 2011
Number 14
The 9th Balkan Congress of Medical Genetics
Number 14
14 - Vol. 14 (1), 2011
Number 13
Vol. 13 (2), 2010
Number 13
Vol.13 (1), 2010
Number 12
Vol.12 (2), 2009
Number 12
Vol.12 (1), 2009
Number 11
Vol.11 (2),2008
Number 11
Vol.11 (1),2008
Number 10
Vol.10 (2), 2007
Number 10
10 (1),2007
Number 9
1&2, 2006
Number 9
3&4, 2006
Number 8
1&2, 2005
Number 8
3&4, 2004
Number 7
1&2, 2004
Number 6
3&4, 2003
Number 6
1&2, 2003
Number 5
3&4, 2002
Number 5
1&2, 2002
Number 4
Vol.3 (4), 2000
Number 4
Vol.2 (4), 1999
Number 4
Vol.1 (4), 1998
Number 4
3&4, 2001
Number 4
1&2, 2001
Number 3
Vol.3 (3), 2000
Number 3
Vol.2 (3), 1999
Number 3
Vol.1 (3), 1998
Number 2
Vol.3(2), 2000
Number 2
Vol.1 (2), 1998
Number 2
Vol.2 (2), 1999
Number 1
Vol.3 (1), 2000
Number 1
Vol.2 (1), 1999
Number 1
Vol.1 (1), 1998

 

 


 About the journal ::: Editorial ::: Subscription ::: Information for authors ::: Contact
 Copyright © Balkan Journal of Medical Genetics 2006