
MICROARRAY TECHNOLOGY REVEALS POTENTIALLY
NOVEL GENES AND PATHWAYS INVOLVED IN
NON-FUNCTIONING PITUITARY ADENOMAS Qiao X, Wang H, Wang X, Zhao B, Liu J, *Corresponding Author: Jun Liu, M.D., Department of Neurosurgery, The Second Hospital of Jilin University, 218 Ziqiang
Road, Changchun, 130021, Jilin Province, People’s Republic of China. Tel: +86-138-0431-7080. E-mail: LiuJun66@126.com page: 5
|
REFERENCES
1. Gruppetta M, Mercieca C, Vassallo J. Prevalence and
incidence of pituitary adenomas: A population based
study in Malta. Pituitary. 2013; 16(4): 545-553.
2. Karavitaki N. Prevalence and incidence of pituitary
adenomas. Ann Endocrinol (Paris). 2012; 73(2): 79-80.
3. Pereira AM, Biermasz NR. Treatment of nonfunctioning
pituitary adenomas: What were the contributions
of the last 10 years? A critical view. Ann
Endocrinol (Paris). 2012; 73(2): 111-116.
4. Chaidarun SS, Klibanski A. Gonadotropinomas. Semin
Reprod Med. 2002; 20(4): 339-348.
5. Lee M, Marinoni I, Irmler M, Psaras T, Honegger
JB, Beschorner R, et al. Transcriptome analysis of
MENX-associated rat pituitary adenomas identifies
novel molecular mechanisms involved in the pathogenesis
of human pituitary gonadotroph adenomas.
Acta Neuropathol. 2013; 126(1): 137-150.
6. Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial
isolated pituitary adenomas (FIPA) and the pituitary
adenoma predisposition due to mutations in the aryl
hydrocarbon receptor interacting protein (AIP) gene.
Endocr Rev. 2013; 34(2): 239-277.
7. Stratakis CA, Tichomirowa MA, Boikos S, Azevedo
MF, Lodish M, Martari M, et al. The role of germline
AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C
mutations in causing pituitary adenomas in a large
cohort of children, adolescents, and patients with
genetic syndromes. Clin Genet. 2010; 78(5): 457-463.
8. Trovato M, Torre ML, Ragonese M, Simone A, Scarfi
R, Barresi V, et al. HGF/c-met system targeting PI3K/
AKT and STAT3/phosphorylated-STAT3 pathways in
pituitary adenomas: An immunohistochemical characterization
in view of targeted therapies. Endocrine.
2013; 44(3): 735-743.
9. Duran-Prado M, Saveanu A, Luque RM, Gahete MD,
Gracia-Navarro F, Jaquet P, et al. A potential inhibitory
role for the new truncated variant of somatostatin
receptor 5, sst5TMD4, in pituitary adenomas poorly
responsive to somatostatin analogs. J Clin Endocrinol
Metab. 2010; 95(5): 2497-2502.
10. Rubinfeld H, Shimon I. PI3K/Akt/mTOR and Raf/
MEK/ERK signaling pathways perturbations in nonfunctioning
pituitary adenomas. Endocrine. 2012;
42(2): 285-291.
11. Rotondi S, Oliva MA, Esposito V, Ventura L,
Giangaspero F, Alesse E, et al. AIP expression in
non-functioning pituitary adenomas is strongly associated
with the gonadotroph phenotype but not
with tumour aggressiveness. Endocrine Abstracts.
2014; 35: P835. (hppt:// www.endocrine-abstracts.
org/ea/0035/ea0035P835/ htm).
12. Mussnich P, Raverot G, Jaffrain-Rea ML, Fraggetta
F, Wierinckx A, Trouillas J, et al. Downregulation
of miR-410 targeting the cyclin B1 gene plays a role
in pituitary gonadotroph tumors. Cell Cycle. 2015;
14(16): 2590-2597.
13. Chesnokova V, Zonis S, Wawrowsky K, Tani Y, Ben-
Shlomo A, Ljubimov V, et al. Clusterin and FOXL2
act concordantly to regulate pituitary gonadotroph
adenoma growth. Mol Endocrinol. 2012; 26(12):
2092-2103.
14. Michaelis KA, Knox AJ, Xu M, Kiseljak-Vassiliades
K, Edwards MG, Geraci M, et al. Identification of
growth arrest and DNA-damage-inducible gene beta
(GADD45beta) as a novel tumor suppressor in pituitary
gonadotrope tumors. Endocrinology. 2011;
152(10): 3603-3613.
15. Cai T, Xiao J, Wang ZF, Liu Q, Wu H, Qiu YZ.
Identification of differentially coexpressed genes in
gona-dotrope tumors and normal pituitary using bioinformatics
methods. Pathol Oncol Res. 2014; 20(2):
375-380.
16. Zhao P, Hu W, Wang H, Yu S, Li C, Bai J, et al.
Identification of differentially expressed genes in pituitary
adenomas by integrating analysis of microarray
data. Int J Endocrinol. 2015; 2015: 164087. doi:
10.1155/2015/ 164087.
17. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—
analysis of Affymetrix GeneChip data at the probe
level. Bioinformatics. 2004; 20(3): 307-315.
18. Wilson CL, Miller CJ. Simpleaffy: A BioConductor
package for Affymetrix Quality Control and data
analysis. Bioinformatics. 2005; 21(18): 3683-3685.
19. Kolde R. Pheatmap: Pretty Heatmaps. R Package
Version 0.7. 7. CRAN Repository, 2012.
20. Falcon S, Gentleman R. Using GOstats to test gene
lists for GO term association. Bioinformatics. 2007;
23(2): 257-258.
21. Szklarczyk D, Franceschini A, Wyder S, Forslund
K, Heller D, Huerta-Cepas J, et al. STRING v10:
Protein-protein interaction networks, integrated over
the tree of life. Nucleic Acids Res. 2015; 43(Database
issue): D447-D452.
22. Kohl M, Wiese S, Warscheid B. Cytoscape: Software
for visualization and analysis of biological networks.
Methods Mol Biol. 2011; 696: 291-303.
23. Davis AP, Grondin CJ, Lennon-Hopkins K, Saraceni-
Richards C, Sciaky D, King BL, et al. The Comparative
Toxicogenomics Database’s 10th year anniversary:
Update 2015. Nucleic Acids Res. 2015;
43(Database issue): D914-D920.
24. Suliman M, Royds J, Cullen D, Timperley W, Powell
T, Battersby R, et al. Mdm2 and the p53 pathway in
human pituitary adenomas. Clin Endocrinol (Oxf).
2001; 54(3): 317-325.
25. Butz H, Likó I, Czirják S, Igaz P, Korbonits M, Rácz
K, et al. MicroRNA profile indicates downregulation
of the TGFβ pathway in sporadic non-functioning
pituitary adenomas. Pituitary. 2011; 14(2): 112-124.
26. Rishi A, Sharma MC, Sarkar C, Jain D, Singh M, Mahapatra
AK, et al. A clinicopathological and immuno-
histochemical study of clinically non-functioning
pituitary adenomas: A single institutional experience.
Neurol India. 2010; 58(3): 418-423.
27. Chaidarun SS, Eggo MC, Sheppard MC, Stewart
PM. Expression of epidermal growth factor (EGF),
its receptor, and related oncoprotein (erbB-2) in human
pituitary tumors and response to EGF in vitro.
Endocrinology. 1994; 135(5): 2012-2021.
28. Onguru O, Scheithauer BW, Kovacs K, Vidal S, Jin
L, Zhang S, et al. Analysis of epidermal growth factor
receptor and activated epidermal growth factor receptor
expression in pituitary adenomas and carcinomas.
Mod Pathol. 2004; 17(7): 772-780.
29. Chaidarun SS, Klibanski A, Alexander JM. Tumorspecific
expression of alternatively spliced estrogen
receptor messenger ribonucleic acid variants in human
pituitary adenomas. J Clin Endocrinol Metab.
1997; 82(4): 1058-1065.
30. Cheunsuchon P, Zhou Y, Zhang X, Lee H, Chen
W, Nakayama Y, et al. Silencing of the imprinted
DLK1-MEG3 locus in human clinically nonfunctioning
pituitary adenomas. Am J Pathol. 2011; 179(4):
2120-2130.
31. Moreno CS, Evans CO, Zhan X, Okor M, Desiderio
DM, Oyesiku NM. Novel molecular signaling and
classification of human clinically nonfunctional pituitary
adenomas identified by gene expression profiling
and proteomic analyses. Cancer Res. 2005;
65(22): 10214-10222.
32. Simpson DJ, Bicknell JE, McNicol AM, Clayton RN,
Farrell WE. Hypermethylation of the p16/CDKN2A/
MTSI gene and loss of protein expression is associated
with nonfunctional pituitary adenomas but not
somatotrophinomas. Genes Chromosomes Cancer.
1999; 24(4): 328-336.
33. Kim K, Arai K, Sanno N, Osamura RY, Teramoto
A, Shibasaki T. Ghrelin and growth hormone (GH)
secre-tagogue receptor (GHSR) mRNA expression
in human pituitary adenomas. Clin Endocrinol (Oxf).
2001; 54(6): 759-768.
34. Heim MH. The Jak-STAT pathway: Cytokine signalling
from the receptor to the nucleus. J Recept Sig
Transd. 1999; 19(1-4): 75-120.
35. Schindler CW. Series introduction: JAK-STAT signaling
in human disease. J Clin Invest. 2002; 109(9):
1133-1137.
36. Gong J, Zhao Y, Abdel-Fattah R, Amos S, Xiao A,
Lopes MBS, et al. Matrix metalloproteinase-9, a potential
biological marker in invasive pituitary adenomas.
Pituitary. 2008; 11(1): 37-48.
37. Paez-Pereda M, Kuchenbauer F, Arzt E, Stalla G.
Regulation of pituitary hormones and cell proliferation
by components of the extracellular matrix. Braz
J Med Biol Res. 2005; 38(10): 1487-1494.
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|