MICROARRAY TECHNOLOGY REVEALS POTENTIALLY NOVEL GENES AND PATHWAYS INVOLVED IN NON-FUNCTIONING PITUITARY ADENOMAS
Qiao X, Wang H, Wang X, Zhao B, Liu J,
*Corresponding Author: Jun Liu, M.D., Department of Neurosurgery, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130021, Jilin Province, People’s Republic of China. Tel: +86-138-0431-7080. E-mail: LiuJun66@126.com
page: 5

REFERENCES

1. Gruppetta M, Mercieca C, Vassallo J. Prevalence and incidence of pituitary adenomas: A population based study in Malta. Pituitary. 2013; 16(4): 545-553. 2. Karavitaki N. Prevalence and incidence of pituitary adenomas. Ann Endocrinol (Paris). 2012; 73(2): 79-80. 3. Pereira AM, Biermasz NR. Treatment of nonfunctioning pituitary adenomas: What were the contributions of the last 10 years? A critical view. Ann Endocrinol (Paris). 2012; 73(2): 111-116. 4. Chaidarun SS, Klibanski A. Gonadotropinomas. Semin Reprod Med. 2002; 20(4): 339-348. 5. Lee M, Marinoni I, Irmler M, Psaras T, Honegger JB, Beschorner R, et al. Transcriptome analysis of MENX-associated rat pituitary adenomas identifies novel molecular mechanisms involved in the pathogenesis of human pituitary gonadotroph adenomas. Acta Neuropathol. 2013; 126(1): 137-150. 6. Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev. 2013; 34(2): 239-277. 7. Stratakis CA, Tichomirowa MA, Boikos S, Azevedo MF, Lodish M, Martari M, et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin Genet. 2010; 78(5): 457-463. 8. Trovato M, Torre ML, Ragonese M, Simone A, Scarfi R, Barresi V, et al. HGF/c-met system targeting PI3K/ AKT and STAT3/phosphorylated-STAT3 pathways in pituitary adenomas: An immunohistochemical characterization in view of targeted therapies. Endocrine. 2013; 44(3): 735-743. 9. Duran-Prado M, Saveanu A, Luque RM, Gahete MD, Gracia-Navarro F, Jaquet P, et al. A potential inhibitory role for the new truncated variant of somatostatin receptor 5, sst5TMD4, in pituitary adenomas poorly responsive to somatostatin analogs. J Clin Endocrinol Metab. 2010; 95(5): 2497-2502. 10. Rubinfeld H, Shimon I. PI3K/Akt/mTOR and Raf/ MEK/ERK signaling pathways perturbations in nonfunctioning pituitary adenomas. Endocrine. 2012; 42(2): 285-291. 11. Rotondi S, Oliva MA, Esposito V, Ventura L, Giangaspero F, Alesse E, et al. AIP expression in non-functioning pituitary adenomas is strongly associated with the gonadotroph phenotype but not with tumour aggressiveness. Endocrine Abstracts. 2014; 35: P835. (hppt:// www.endocrine-abstracts. org/ea/0035/ea0035P835/ htm). 12. Mussnich P, Raverot G, Jaffrain-Rea ML, Fraggetta F, Wierinckx A, Trouillas J, et al. Downregulation of miR-410 targeting the cyclin B1 gene plays a role in pituitary gonadotroph tumors. Cell Cycle. 2015; 14(16): 2590-2597. 13. Chesnokova V, Zonis S, Wawrowsky K, Tani Y, Ben- Shlomo A, Ljubimov V, et al. Clusterin and FOXL2 act concordantly to regulate pituitary gonadotroph adenoma growth. Mol Endocrinol. 2012; 26(12): 2092-2103. 14. Michaelis KA, Knox AJ, Xu M, Kiseljak-Vassiliades K, Edwards MG, Geraci M, et al. Identification of growth arrest and DNA-damage-inducible gene beta (GADD45beta) as a novel tumor suppressor in pituitary gonadotrope tumors. Endocrinology. 2011; 152(10): 3603-3613. 15. Cai T, Xiao J, Wang ZF, Liu Q, Wu H, Qiu YZ. Identification of differentially coexpressed genes in gona-dotrope tumors and normal pituitary using bioinformatics methods. Pathol Oncol Res. 2014; 20(2): 375-380. 16. Zhao P, Hu W, Wang H, Yu S, Li C, Bai J, et al. Identification of differentially expressed genes in pituitary adenomas by integrating analysis of microarray data. Int J Endocrinol. 2015; 2015: 164087. doi: 10.1155/2015/ 164087. 17. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy— analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004; 20(3): 307-315. 18. Wilson CL, Miller CJ. Simpleaffy: A BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics. 2005; 21(18): 3683-3685. 19. Kolde R. Pheatmap: Pretty Heatmaps. R Package Version 0.7. 7. CRAN Repository, 2012. 20. Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007; 23(2): 257-258. 21. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015; 43(Database issue): D447-D452. 22. Kohl M, Wiese S, Warscheid B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol Biol. 2011; 696: 291-303. 23. Davis AP, Grondin CJ, Lennon-Hopkins K, Saraceni- Richards C, Sciaky D, King BL, et al. The Comparative Toxicogenomics Database’s 10th year anniversary: Update 2015. Nucleic Acids Res. 2015; 43(Database issue): D914-D920. 24. Suliman M, Royds J, Cullen D, Timperley W, Powell T, Battersby R, et al. Mdm2 and the p53 pathway in human pituitary adenomas. Clin Endocrinol (Oxf). 2001; 54(3): 317-325. 25. Butz H, Likó I, Czirják S, Igaz P, Korbonits M, Rácz K, et al. MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary. 2011; 14(2): 112-124. 26. Rishi A, Sharma MC, Sarkar C, Jain D, Singh M, Mahapatra AK, et al. A clinicopathological and immuno- histochemical study of clinically non-functioning pituitary adenomas: A single institutional experience. Neurol India. 2010; 58(3): 418-423. 27. Chaidarun SS, Eggo MC, Sheppard MC, Stewart PM. Expression of epidermal growth factor (EGF), its receptor, and related oncoprotein (erbB-2) in human pituitary tumors and response to EGF in vitro. Endocrinology. 1994; 135(5): 2012-2021. 28. Onguru O, Scheithauer BW, Kovacs K, Vidal S, Jin L, Zhang S, et al. Analysis of epidermal growth factor receptor and activated epidermal growth factor receptor expression in pituitary adenomas and carcinomas. Mod Pathol. 2004; 17(7): 772-780. 29. Chaidarun SS, Klibanski A, Alexander JM. Tumorspecific expression of alternatively spliced estrogen receptor messenger ribonucleic acid variants in human pituitary adenomas. J Clin Endocrinol Metab. 1997; 82(4): 1058-1065. 30. Cheunsuchon P, Zhou Y, Zhang X, Lee H, Chen W, Nakayama Y, et al. Silencing of the imprinted DLK1-MEG3 locus in human clinically nonfunctioning pituitary adenomas. Am J Pathol. 2011; 179(4): 2120-2130. 31. Moreno CS, Evans CO, Zhan X, Okor M, Desiderio DM, Oyesiku NM. Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res. 2005; 65(22): 10214-10222. 32. Simpson DJ, Bicknell JE, McNicol AM, Clayton RN, Farrell WE. Hypermethylation of the p16/CDKN2A/ MTSI gene and loss of protein expression is associated with nonfunctional pituitary adenomas but not somatotrophinomas. Genes Chromosomes Cancer. 1999; 24(4): 328-336. 33. Kim K, Arai K, Sanno N, Osamura RY, Teramoto A, Shibasaki T. Ghrelin and growth hormone (GH) secre-tagogue receptor (GHSR) mRNA expression in human pituitary adenomas. Clin Endocrinol (Oxf). 2001; 54(6): 759-768. 34. Heim MH. The Jak-STAT pathway: Cytokine signalling from the receptor to the nucleus. J Recept Sig Transd. 1999; 19(1-4): 75-120. 35. Schindler CW. Series introduction: JAK-STAT signaling in human disease. J Clin Invest. 2002; 109(9): 1133-1137. 36. Gong J, Zhao Y, Abdel-Fattah R, Amos S, Xiao A, Lopes MBS, et al. Matrix metalloproteinase-9, a potential biological marker in invasive pituitary adenomas. Pituitary. 2008; 11(1): 37-48. 37. Paez-Pereda M, Kuchenbauer F, Arzt E, Stalla G. Regulation of pituitary hormones and cell proliferation by components of the extracellular matrix. Braz J Med Biol Res. 2005; 38(10): 1487-1494.



Number 27
VOL. 27 (2), 2024
Number 27
VOL. 27 (1), 2024
Number 26
Number 26 VOL. 26(2), 2023 All in one
Number 26
VOL. 26(2), 2023
Number 26
VOL. 26, 2023 Supplement
Number 26
VOL. 26(1), 2023
Number 25
VOL. 25(2), 2022
Number 25
VOL. 25 (1), 2022
Number 24
VOL. 24(2), 2021
Number 24
VOL. 24(1), 2021
Number 23
VOL. 23(2), 2020
Number 22
VOL. 22(2), 2019
Number 22
VOL. 22(1), 2019
Number 22
VOL. 22, 2019 Supplement
Number 21
VOL. 21(2), 2018
Number 21
VOL. 21 (1), 2018
Number 21
VOL. 21, 2018 Supplement
Number 20
VOL. 20 (2), 2017
Number 20
VOL. 20 (1), 2017
Number 19
VOL. 19 (2), 2016
Number 19
VOL. 19 (1), 2016
Number 18
VOL. 18 (2), 2015
Number 18
VOL. 18 (1), 2015
Number 17
VOL. 17 (2), 2014
Number 17
VOL. 17 (1), 2014
Number 16
VOL. 16 (2), 2013
Number 16
VOL. 16 (1), 2013
Number 15
VOL. 15 (2), 2012
Number 15
VOL. 15, 2012 Supplement
Number 15
Vol. 15 (1), 2012
Number 14
14 - Vol. 14 (2), 2011
Number 14
The 9th Balkan Congress of Medical Genetics
Number 14
14 - Vol. 14 (1), 2011
Number 13
Vol. 13 (2), 2010
Number 13
Vol.13 (1), 2010
Number 12
Vol.12 (2), 2009
Number 12
Vol.12 (1), 2009
Number 11
Vol.11 (2),2008
Number 11
Vol.11 (1),2008
Number 10
Vol.10 (2), 2007
Number 10
10 (1),2007
Number 9
1&2, 2006
Number 9
3&4, 2006
Number 8
1&2, 2005
Number 8
3&4, 2004
Number 7
1&2, 2004
Number 6
3&4, 2003
Number 6
1&2, 2003
Number 5
3&4, 2002
Number 5
1&2, 2002
Number 4
Vol.3 (4), 2000
Number 4
Vol.2 (4), 1999
Number 4
Vol.1 (4), 1998
Number 4
3&4, 2001
Number 4
1&2, 2001
Number 3
Vol.3 (3), 2000
Number 3
Vol.2 (3), 1999
Number 3
Vol.1 (3), 1998
Number 2
Vol.3(2), 2000
Number 2
Vol.1 (2), 1998
Number 2
Vol.2 (2), 1999
Number 1
Vol.3 (1), 2000
Number 1
Vol.2 (1), 1999
Number 1
Vol.1 (1), 1998

 

 


 About the journal ::: Editorial ::: Subscription ::: Information for authors ::: Contact
 Copyright © Balkan Journal of Medical Genetics 2006