ANDROGEN INSENSITIVITY SYNDROME DUE TO NON-CODING VARIATION IN THE ANDROGEN RECEPTOR GENE: REVIEW OF THE LITERATURE AND CASE REPORT OF A PATIENT WITH MOSAIC C.-547C>T VARIANT
Noveski P, Plaseski T, Dimitrovska M, Plaseska-Karanfilska D
*Corresponding Author: Dijana Plaseska-Karanfilska, MD, PhD, Research Centre for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, Republic of Macedonia, Tel. +389 2 3235 410, E-mail: dijana@manu.edu.mk
page: 51
download article in pdf format

Abstract

Sexual development (SD) is a complex process with strict spatiotemporal regulation of gene expression. Despite advancements in molecular diagnostics, disorders of sexual development (DSD) have a diagnostic rate of ∼50%. Androgen insensitivity syndrome (AIS) represents the most common form of 46,XY DSD, with a spectrum of defects in androgen action. Considering the importance of very strict regulation of the SD, it is reasonable to assume that the genetic cause for proportion of the DSD lies in the non-coding part of the genome that regulates proper gene functioning. Here we present a patient with partial AIS (PAIS) due to a mosaic de novo c.-547C>T pathogenic variant in the 5’UTR of androgen receptor (AR) gene. The same mutation was previously described as inherited, in two unrelated patients with complete AIS (CAIS). Thus, our case further confirms the previous findings that variable gene expressivity could be attributed to mosaicism. Mutations in 5’UTR could create new upstream open reading frames (uORFs) or could disrupt the existing one. A recent systematic genome-wide study identified AR as a member of a subset of genes where modifications of uORFs represents an important disease mechanism. Only a small number of studies are reporting non-coding mutations in the AR gene and our case emphasizes the importance of molecular testing of the entire AR locus in AIS patients. The introduction of new methods for comprehensive molecular testing in routine genetic diagnosis, accompanied with new tools for in sillico analysis could improve the genetic diagnosis of AIS, and DSD in general.



Number 27
VOL. 27 (2), 2024
Number 27
VOL. 27 (1), 2024
Number 26
Number 26 VOL. 26(2), 2023 All in one
Number 26
VOL. 26(2), 2023
Number 26
VOL. 26, 2023 Supplement
Number 26
VOL. 26(1), 2023
Number 25
VOL. 25(2), 2022
Number 25
VOL. 25 (1), 2022
Number 24
VOL. 24(2), 2021
Number 24
VOL. 24(1), 2021
Number 23
VOL. 23(2), 2020
Number 22
VOL. 22(2), 2019
Number 22
VOL. 22(1), 2019
Number 22
VOL. 22, 2019 Supplement
Number 21
VOL. 21(2), 2018
Number 21
VOL. 21 (1), 2018
Number 21
VOL. 21, 2018 Supplement
Number 20
VOL. 20 (2), 2017
Number 20
VOL. 20 (1), 2017
Number 19
VOL. 19 (2), 2016
Number 19
VOL. 19 (1), 2016
Number 18
VOL. 18 (2), 2015
Number 18
VOL. 18 (1), 2015
Number 17
VOL. 17 (2), 2014
Number 17
VOL. 17 (1), 2014
Number 16
VOL. 16 (2), 2013
Number 16
VOL. 16 (1), 2013
Number 15
VOL. 15 (2), 2012
Number 15
VOL. 15, 2012 Supplement
Number 15
Vol. 15 (1), 2012
Number 14
14 - Vol. 14 (2), 2011
Number 14
The 9th Balkan Congress of Medical Genetics
Number 14
14 - Vol. 14 (1), 2011
Number 13
Vol. 13 (2), 2010
Number 13
Vol.13 (1), 2010
Number 12
Vol.12 (2), 2009
Number 12
Vol.12 (1), 2009
Number 11
Vol.11 (2),2008
Number 11
Vol.11 (1),2008
Number 10
Vol.10 (2), 2007
Number 10
10 (1),2007
Number 9
1&2, 2006
Number 9
3&4, 2006
Number 8
1&2, 2005
Number 8
3&4, 2004
Number 7
1&2, 2004
Number 6
3&4, 2003
Number 6
1&2, 2003
Number 5
3&4, 2002
Number 5
1&2, 2002
Number 4
Vol.3 (4), 2000
Number 4
Vol.2 (4), 1999
Number 4
Vol.1 (4), 1998
Number 4
3&4, 2001
Number 4
1&2, 2001
Number 3
Vol.3 (3), 2000
Number 3
Vol.2 (3), 1999
Number 3
Vol.1 (3), 1998
Number 2
Vol.3(2), 2000
Number 2
Vol.1 (2), 1998
Number 2
Vol.2 (2), 1999
Number 1
Vol.3 (1), 2000
Number 1
Vol.2 (1), 1999
Number 1
Vol.1 (1), 1998

 

 


 About the journal ::: Editorial ::: Subscription ::: Information for authors ::: Contact
 Copyright © Balkan Journal of Medical Genetics 2006