ARRAY-BASED COMPARATIVE GENOMIC HYBRIDIZATION APPLICATION FOR REVEALING GENOMIC MICRO IMBALANCES IN CONGENITAL MALFORMATIONS
Hadjidekova SP*, Toncheva DI
*Corresponding Author: Savina P. Hadjidekova, M.D., Department of Medical Genetics, Medical Faculty, Medical University-Sofia, 2 Zdrave str., Sofia 1431, Bulgaria; Tel./Fax: +359-2-9520-357; E-mail: savinaagova@yahoo.com
page: 3
download article in pdf format

Abstract

Birth defects affect 3-5% of live births and are a major cause of fetal, neonatal and infant morbid­ity and mortality in all industrialized countries. Some 40-60% of congenital physical anomalies in humans have no cause, 20% that seem to be multifactorial, 10­13% environmental and 12-25% genetic.

Classical cytogenetic or common comparative genomic hybridization (CGH) methods have limited use in investigation of the whole genome because of their low resolution (5-10 Mb). Fluorescence in situ hybridization (FISH) and quantitative fluorescence polymerase chain reaction (QF-PCR) have higher resolution but do not allow genome-wide screening and require some prior knowledge regarding the sus­pected chromosomal abnormality and its genomic lo­cation.

Because of these limitations, the impact of ge­netic micro imbalances as etiological factors for the development of congenital malformations (CM) is underestimated. Array-based techniques have enabled higher resolution screens for genomic imbalances in CM as they permit identification of micro aberrations with a size between 60 bp and several hundred ki­lobases. They make possible screening of the whole genome and detection of novel unbalanced micro structural rearrangements in a single reaction and also effective screening of new dose-dependent genes. In addition, the application of the aCGH technology has the potential to improve our understanding of the nor­mal quantitative variants of the human genome.

Key words: Array comparative genomic hybrid­ization (aCGH); Copy number variations (CNVs); Congenital malformations (CM); Micro imbalances
 
__________________________________________________________________
Department of Medical Genetics, Medical Faculty,

Medical University-Sofia, Sofia 1431, Bulgaria




Number 20
VOL. 20 (1), 2017
Number 19
VOL. 19 (2), 2016
Number 19
VOL. 19 (1), 2016
Number 18
VOL. 18 (2), 2015
Number 18
VOL. 18 (1), 2015
Number 17
VOL. 17 (2), 2014
Number 17
VOL. 17 (1), 2014
Number 16
VOL. 16 (2), 2013
Number 16
VOL. 16 (1), 2013
Number 15
VOL. 15 (2), 2012
Number 15
VOL. 15, 2012 Supplement
Number 15
Vol. 15 (1), 2012
Number 14
14 - Vol. 14 (2), 2011
Number 14
The 9th Balkan Congress of Medical Genetics
Number 14
14 - Vol. 14 (1), 2011
Number 13
Vol. 13 (2), 2010
Number 13
Vol.13 (1), 2010
Number 12
Vol.12 (2), 2009
Number 12
Vol.12 (1), 2009
Number 11
Vol.11 (2),2008
Number 11
Vol.11 (1),2008
Number 10
Vol.10 (2), 2007
Number 10
10 (1),2007
Number 9
1&2, 2006
Number 9
3&4, 2006
Number 8
1&2, 2005
Number 8
3&4, 2004
Number 7
1&2, 2004
Number 6
3&4, 2003
Number 6
1&2, 2003
Number 5
3&4, 2002
Number 5
1&2, 2002
Number 4
Vol.3 (4), 2000
Number 4
Vol.2 (4), 1999
Number 4
Vol.1 (4), 1998
Number 4
3&4, 2001
Number 4
1&2, 2001
Number 3
Vol.3 (3), 2000
Number 3
Vol.2 (3), 1999
Number 3
Vol.1 (3), 1998
Number 2
Vol.3(2), 2000
Number 2
Vol.1 (2), 1998
Number 2
Vol.2 (2), 1999
Number 1
Vol.3 (1), 2000
Number 1
Vol.2 (1), 1999
Number 1
Vol.1 (1), 1998

 

 


 About the journal ::: Editorial ::: Subscription ::: Information for authors ::: Contact
 Copyright © Balkan Journal of Medical Genetics 2006