
25

DOI: 10.2478/bjmg-2022-0006
25 (1), 2022  l  25-34

1	 Endocrine	Metabolic	Disease	Section,	The	Affiliated	Hospital	 to	
Changchun University of Chinese Medicine, Changchun City, Jilin 
Province, 130021, China

2	 Department	of	Dermatology,	The	Affiliated	Hospital	to	Changchun	
University of Chinese Medicine, Changchun City, Jilin Province, 
130021, China

3 College of Basic Medicine, Changchun University of Chinese Medi-
cine, 1035 Boshuo Road, Jingyue District, Changchun City, Jilin 
Province, 130117, China

IDENTIFICATION OF KEY TARGET GENES AND 
PATHWAY ANALYSIS IN NONALCOHOLIC FATTY LIVER 
DISEASE VIA INTEGRATED BIOINFORMATICS ANALYSIS

*Corresponding Author: Lei Gao, MD, College of Basic Medicine, Changchun University of Chi-
nese Medicine, 1035 Boshuo, Road, Jingyue District, Changchun City, Jilin Province, 130117, China;  
Tel:+	86-431-8604	5309,	Email:	gaolei790708@163.com

Chen	X.1,	Zhang	L.2,	Wang	Y.1,	Li	R.1,	Yang	M.1,	Gao	L.3*

ABSTRACT

Purpose: This	study	aimed	at	exploring	the	mecha-
nisms	underlying	nonalcoholic	fatty	liver	disease	(NAFLD)	
and	developing	new	diagnostic	biomarkers	for	nonalco-
holic	steatohepatitis	(NASH).	Methods:	The	microarray	
dataset	GES83452	was	downloaded	from	the	NCBI-GEO	
database,	and	the	differentially	expressed	RNAs	(DERs)	
were	 screened	between	 the	NAFLD	and	non-NAFLD	
samples	of	the	baseline	and	1-year	follow-up	time	point	
group	based	on	the	Limma	package.	Results: A total of 
561	DERs	(268	downregulated	and	293	upregulated)	were	
screened	in	the	baseline	time	point	group,	and	1163	DERs	
(522	downregulated	and	641	upregulated)	were	screened	
in	the	1-year	follow-up	time	point	group.	A	total	of	74	
lncRNA–miRNA	pairs	and	523	miRNA–mRNA	pairs	were	
obtained	in	order	to	construct	a	lncRNA–miRNA–mRNA	
regulatory	network.	Subsequently,	functional	enrichment	
analysis	revealed	28	GO	and	9	KEGG	pathways	in	the	
ceRNA	regulatory	network.	LEPR and CXCL10 are in-
volved	in	the	Cytokine–cytokine	receptor	interaction	(P = 
1.86E-02),	and	the	FOXO1 is involved in both the insulin 
signaling	pathway	(P =	1.79E-02)	and	the	pathways	in	
cancer	(P =	2.87E-02).	Conclusion: LEPR, CXCL10, and 
FOXO1	were	the	characteristic	target	genes	for	NAFLD.
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INTRODUCTION

Nonalcoholic	fatty	liver	disease	(NAFLD)	is	the	most	
common	type	of	chronic	liver	disease	with	a	prevalence	
rate	of	25%	worldwide	(1).	Several	lifestyle-related	factors	
are	associated	with	incident	fatty	liver	such	as	alcohol	in-
take,	lower	physical	activity,	smoking,	and	shift	work.	Poor	
lifestyle	choices	are	often	the	main	cause	of	fatty	liver,	
these	include	smoking,	drinking,	lack	of	physical	activity,	
and	shift	work,	etc.	In	addition,	high	triglycerides,	type	2	
diabetes	mellitus,	obesity,	and	hypertension	are	associated	
with	incident	fatty	liver.	Therefore,	lifestyle	modification	
is	strongly	recommended	to	prevent	fatty	liver	(2,	3).	It	
is	difficult	to	detect	this	problem	in	the	earlier	stages	of	
the	disease,	and	may	thus	further	develop	into	advanced	
liver	diseases,	such	as	cirrhosis	and	hepatocellular	carci-
noma,	bringing	forth	clinical	challenges	to	the	treatment	of	
NAFLD (4).	In	the	literature,	the	severity	of	NAFLD	in	pa-
tients	with	type	2	diabetes	and	obesity	will	be	significantly	
affected,	 increasing	the	degree	of	deterioration	of	 liver	
fibrosis	and	the	possibility	of	further	development	of	end-
stage	liver	disease	(5-7).	Likewise,	studies	have	shown	that	
when	NAFLD	patients	suffer	from	cardiovascular	diseases	
and	dyslipidemia,	these	factors	have	a	negative	impact	on	
the	natural	progression	of	NAFLD	(8-10).	Nearly	40%	of	
patients	with	NAFLD	die	of	complications,	as	previously	
reported	(1).	However,	 the	detailed	mechanisms	under	
which	NAFLD	develops	remain	largely	unknown.	Diet	
adjustment	and	weight	loss	can	improve	NAFLD,	but	it	
is	difficult	 to	maintain.	Moreover,	 the	theory	of	 insulin	
resistance	has	been	widely	accepted	clinically.	 Insulin	
sensitizers	have	a	certain	therapeutic	effect,	but	they	can	
cause	adverse	reactions	such	as	 increased	body	weight	
and	its	 therapeutic	 target	 is	 too	limited.	Therefore,	 this	
study	aimed	at	finding	new	molecular	targets	to	provide	a	
theoretical	basis	for	new	and	effective	treatment	methods	
of	NAFLD.
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Long	non-coding	RNA	(lncRNA)	is	the	main	compo-
nent	of	the	human	transcriptome.	Long	non-coding	RNA	
plays	an	important	role	in	regulating	cell	migration,	pro-
liferation,	invasion,	and	metastasis.	It	can	also	be	used	as	
a	diagnostic	marker	or	 therapeutic	 target	for	malignant	
tumors	and	other	diseases.	Competitive	endogenous	RNA	
(ceRNA)	is	a	transcript	with	the	same	microRNA	(miRNA)	
response	element,	which	binds	to	miRNA	to	compete	and	
regulate	its	 target	gene,	 thereby	affecting	the	biological	
behavior	of	the	disease.	Studies	have	confirmed	that	the	
mutual	regulation	between	lncRNA	and	miRNA	and	their	
downstream	target	genes	plays	an	important	role	in	the	
occurrence	and	development	of	diseases	(11).	

The	inflammatory	component	of	nonalcoholic	ste-
atohepatitis	 (NASH)	 is	more	 difficult	 to	 capture	with	
ultrasound-assisted	techniques.	Although	more	and	more	
technologies	are	applied	in	clinical	practice,	such	as	quan-
titative and contrast-enhanced ultrasound, there are still 
many	technical	barriers	to	be	broken;	and	not	all	technolo-
gies	have	been	successful	in	clinical	and	research	prac-
tice	(12).	Due	to	the	limitations	of	liver	biopsy,	searching	
for	non-invasive	and	reliable	diagnostic	biomarkers	for	
NAFLD	is	a	priority	for	current	research.	Bioinformatics	
has	been	widely	used	to	explore	biomarkers	of	different	
diseases,	but	NAFLD-related	biomarkers	need	to	be	further	
explored	to	help	the	early	diagnosis	and	prognosis	evalu-
ation	of	NAFLD	(13).

In	 this	 study,	human	samples	 from	 the	Gene	Ex-
pression	Omnibus	(GEO)	database	were	used	to	identify	
key	genes	related	 to	NAFLD	and	non-NASH	samples	
during	the	baseline	and	1-year	follow-up	time	point,	and	
to	 explore	 the	underlying	mechanism	of	NAFLD	and	
develop	new	NAFLD	diagnostic	biomarkers.	Then,	 the	
lncRNA–miRNA–mRNA	network	 related	 to	NAFLD	
was	constructed	by	mapping	the	differentially	expressed	
RNAs	(DERs)	into	a	global	triple	network	via	starBase	
and	miRcode	databases.	This	was	done	to	identify	which	
RNAs	can	be	used	as	sensitive	and	specific	markers	for	
NAFLD.	Furthermore,	Gene	Ontology	(GO)	and	Kyoto	
Encyclopedia	of	Genes	and	Genomes	(KEGG)	analyses	
were	performed	to	explore	the	potential	regulatory	func-
tions	of	RNAs.	Finally,	the	PharmGKB	database	was	used	
to	search	and	obtain	gene-related	drug	molecules	in	the	
ceRNA	regulatory	network	and	then	build	a	gene–drug	
connection	network	 to	screen	out	 important	gene	mol-
ecules	and	KEGG	signaling	pathways	involved	in	genes.

MATERIALS AND METHODS

Microarray data and data preprocessing
GES83452	(14)	in	the	NCBI-GEO	(https://www.ncbi.

nlm.nih.gov/)	(15)	database	were	downloaded	on	April	10,	

2020,	which	included	a	total	of	231	samples,	 including	
159	patients	at	baseline	(44	no	NASH,	104	NASH,	and	
4	undefined)	and	79	patients	at	1-year	follow-up	(54	no	
NASH,	22	NASH,	and	3	undefined)	based	on	platforms	
GPL16686	[HuGene-2_0-st]	Affymetrix	Human	Gene	2.0	
ST	Array	[transcript	(gene)	version].

Screening significantly differentially expressed 
RNAs and functional enrichment analyses
The	mRNA	and	lncRNA	in	the	GES83452	datasets	

were	reannotated	using	the	HUGO	Gene	Nomenclature	
Committee	(http://www.genenames.org/)	(16)	based	on	
information	 of	Transcript	 ID,	RefSeq	 ID,	 etc.,	which	
contain	4600	lncRNAs	and	19195	protein	coding	genes.	
The	Limma	package	(version	3.34.0,	https://bioconduc-
tor.org/packages/release/bioc/html/limma.html)	(17)	 in	
R	was	used	to	identify	DERs	between	the	NAFLD	and	
non-NAFLD	samples	of	the	baseline	and	1-year	follow-up	
time	point	group.	False	discovery	rate	(FDR)	<	0.05	and	
|log2	fold	change	(FC)|	>	0.5	were	used	as	the	cutoff	criteria	
to	define	DERs,	and	the	ggplot2packages	in	R	was	used	
to	visualize	the	volcano	plots.	The	heat	map	was	plotted	
using	the	pheat	map	package	(version	1.0.8,	https://cran.r-
project.org/package=pheat	map)	(18)	in	R	and	was	pre-
sented	by	two-way	hierarchical	clustering	heat	maps	(19)	
based	on	Euclidean	distance	(20).	P <	.05	was	considered	
statistically	significant.	The	Venn	software	online	(http://
bioinformatics.psb.ugent.be/webtools/Venn/)	was	used	to	
detect	overlapping	DERs	among	the	baseline	and	1-year	
follow-up	time	point	groups.	Then,	GO	and	KEGG	enrich-
ment	analyses	were	performed	on	intersection	mRNAs	that	
commonly	contained	DERs	using	the	online	tool	DAVID	
(version	6.8,	https://david.ncifcrf.gov/)	(21,	22)	P <	.05	
was	considered	as	significant	enrichment.

Construction of ceRNA network
The	miRNAs	related	to	NAFLD	included	in	the	Hu-

man	MicroRNA	Disease	Database	 (HMDD)	database	
(http://www.cuilab.cn/hmdd)	were	downloaded	(23).	We	
constructed	a	ceRNA	network	based	on	NAFLD	directly	
related	 to	 lncRNAs	and	miRNAs,	as	well	as	 the	miR-
NAs	with	significantly	consistent	expression.	Firstly,	we	
downloaded	the	connection	relationship	pairs	of	lncRNA-
miRNA	in	the	DIANA–LncBase	(version	2,	http://carolina.
imis.athena-innovation.gr/diana_tools/web/index.php)	
(24).	The	regulatory	relationship	between	significantly	
DElncRNA	and	NAFLD-related	differentially	expressed	
miRNA	(DEmiRNA)	was	retained,	with	retention	connec-
tion	score	(miRNA	target	gene	score	(miTG–score):	the	
target	gene	score	of	DEmiRNA;	the	higher	the	value,	the	
greater	the	probability	of	targeting)	higher	than	0.6,	thereby	
the	lncRNA–miRNA	connection	network	was	constructed.	



27

BALKAN JOURNAL OF MEDICAL GENETICS
Chen X., Zhang L., Wang Y., Li R., Yang M., Gao L.

Then,	the	starBase	database	(version	2.0,	http://starbase.
sysu.edu.cn/)	(25)	was	used	to	predict	target	genes	regu-
lated	by	miRNA	linked	to	lncRNA,	and	the	comprehensive	
target	gene	prediction	information	from	five	databases	
(targetScan,	picTar,	RNA22,	PITA	and	miRanda)	was	pro-
vided	in	the	StarBase	database.	The	target	miRNA	regula-
tory	target	gene	relationship	pair	was	selected	in	at	least	
one	of	the	databases,	and	the	miRNA–mRNA	pairs	with	
the	opposite	significant	differential	expression	direction	
was	retained	to	construct	the	miRNA–mRNA	connection	
network.	Finally,	a	ceRNA	regulation	network	composed	
of	lncRNA–miRNA–mRNA	was	constructed	by	combin-
ing	lncRNA–miRNA	and	miRNA–mRNA,	and	the	ceRNA	
network	was	visualizatied	by	using	the	cytoscape	(version	
3.6.1,	http://www.cytoscape.org/).	

The	screened	target	genes	in	the	ceRNA	regulatory	
network	were	 submitted	 to	DAVID	6.8	online	 tool	 to	
perform	functional	annotation	based	on	GO	biological	
processes	and	KEGG	pathway	enrichment	analysis,	the	P	
value	<	0.05	as	the	significance	threshold.

Construction of drug–gene regulation network
The	 pharmacogenetics	 and	 pharmacogenomics	

knowledge	base	(PharmGKB)	(https://www.pharmgkb.
org/)	(26)	collected	the	most	complete	genotype	and	phe-
notype	information	related	to	the	drug	genome	and	was	
classified	systematically,	which	contained	27,007	genes	
related	to	3579	drugs	and	3410	diseases.	In	this	study,	the	
PharmGKB	database	was	used	to	search	for	and	obtain	
the	gene-related	drug	molecules	in	the	regulated	ceRNA	
network;	then	the	gene–drug	connection	network	was	con-
structed,	the	important	gene	molecules	were	screened	out,	
and	the	KEGG	signaling	pathway	of	those	genes	partici-
pated	in	in-depth	analysis.

RESULTS 

Data preprocessing and DERs screening
A	total	of	9698	mRNAs	and	1116	lncRNAs	were	de-

tected	after	data	preprocessing,	and	a	total	of	561	DERs	
(48	lncRNA	and	513	mRNA;	268	downregulated	and	293	
upregulated)	were	 screened	 in	 the	baseline	 time	point	
group,	and	1163	DERs	(114	lncRNA	and	1049	mRNA;	
522	downregulated	and	641	upregulated)	were	screened	
in	the	1-year	follow-up	time	point	group,	with	FDR	<	0.05	
and |log2FC|	>	0.5	as	the	cutoff	criteria.	We	identified	all	
DERs	shown	in	the	volcano	map	according	to	the	value	of	
|log2FC|	and	displayed	DERs	on	a	heat	map	(Figure	1A,	B).	
The	expression	values	of	the	DERs	were	2-way	hierarchi-
cally clustered, and the color contrast indicated that there 
was	a	significant	difference	in	expression	levels	between	
the	NAFLD	and	non-NAFLD	samples	(Figure1	C,	D).	

Subsequently,	a	total	of	220	overlapping	DERs	were	identi-
fied	between	the	baseline	and	1-year	follow-up	time	points,	
which	were	used	by	the	Venn	diagram	software	(Figure	2).	

In	addition,	 the	functional	enrichment	analysis	of	
the	overlapping	DERs	based	on	online	DAVID	analyses	
revealed	22	significantly	related	GO	biological	processes	
and	9	KEGG	pathways,	with	P <	.05	as	the	cutoff	criteria	
(Table	1).	We	found	that	chemotaxis	(GO,	0006935;	P = 
3.110E-04),	unsaturated	fatty	acid	biosynthetic	process	
(GO,	0006636;	P =	4.770E-04),	and	cell-cell	signaling	
(GO,	0007267;	P =	1.513E-03)	were	the	three	most	sig-
nificant	pathways	in	GO	biological	processes.	Meanwhile,	
fatty	acid	metabolism	(hsa01212,	P =	2.300E-04),	PPAR	
signaling	pathway	(hsa03320,	P =	1.090E-03),	and	Toll-
like	receptor	signaling	pathway	(hsa04620,	P =	1.479E-
03)	were	the	three	most	significant	pathways	in	KEGG	
signaling	pathways.

Construction of ceRNA regulation network
A	total	of	77	miRNAs	directly	related	to	NAFLD	

were	downloaded	from	the	HMDD	database.	After	 the	
lncRNA	and	miRNA	connection	relationship	pairs	were	
downloaded	and	the	regulation	relationship	between	signif-
icantly	DElncRNA	and	NAFLD-related	DEmiRNAs	were	
selected,	a	total	of	74	connection	pairs	were	retained	to	
construct	an	lncRNA–miRNA	connection	network	with	a	
connection	coefficient	higher	than	0.6.	In	addition,	after	the	
target	genes	of	the	miRNA	were	screened,	we	compared	
the	regulated	target	genes	with	the	significant	DEmRNAs	
in	target	modules	and	retained	the	opposite	relationship	
pairs	of	the	expressions	of	significant	differential	direction.	
The	miRNA–mRNA	regulation	network	was	constructed	
by	using	a	total	of	523	pairs	of	regulation	relationships.	
Finally,	as	shown	Figure	3,	a	ceRNA	regulation	network	
was	constructed.

A	total	of	28	GO	biological	processes	and	9	KEGG	
pathways	of	the	mRNAs	in	the	ceRNA	regulatory	network	
were	obtained,	with	P <	.05	as	the	significance	threshold	
(Table	2).	We	found	that	a	lipid	biosynthetic	process	(GO,	
0008610; P =	1.15E-06),	a	steroid	metabolic	process	(GO,	
0008202; P =	1.26E-05),	and	a	steroid	biosynthetic	process	
(GO,	0006694;	P =	9.34E-05)	were	the	three	most	signifi-
cant	pathways	in	GO	biological	processes.	Meanwhile,	
the	biosynthesis	of	unsaturated	fatty	acids	(hsa01040,	P = 
2.39E-05),	terpenoid	backbone	biosynthesis	(hsa00900,	P 
=	1.090E-03),	and	heparan	sulfate	biosynthesis	(hsa00534,	
P =	1.38E-02)	were	the	three	most	significant	pathways	in	
KEGG	signaling	pathways.

Construction of drug regulation gene network
The	gene-related	drug	molecule	connection	pairs	

were	downloaded	from	the	PharmGKB	database.	A	total	of	
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154	connection	pairs	were	obtained	by	selecting	the	parts	
related	to	the	genes	in	the	ceRNA	regulatory	network,	and	
a	gene–drug	connection	network	was	constructed	(Figure	
4).	Compared	with	the	pathway	in	which	the	RNAs	sig-
nificantly	participated	in	the	ceRNA	regulatory	network	

constructed	in	the	previous	step,	the	leptin	receptor	(LEPR)	
and CXCL10	are	involved	in	the	Cytokine–cytokine	recep-
tor	interaction	(P =	1.86E-02),	and	FOXO1 is involved in 
both	the	Insulin	signaling	pathway	(P =	1.79E-02)	and	the	
pathways	in	cancer	(P =	2.87E-02).

Figure 1. The	hierarchically	clustering	analysis	of	screened	differentially	expressed	RNAs	(DERs).	Left:	 log2FC-log10 (FDR)	volcano	
map	for	GSE83452	using	the	significant	DERs.	Blue	and	red	dots	indicate	significant	DERs.	The	horizontally	dashed	line	indicates	FDR	
<	0.05.	Two	vertical	lines	indicate	|Log2FC|	>	0.5.	A:	Baseline	time	points;	B:	1-year	follow-up	time	points.	Right:	Two-way	hierarchi-
cally	clustered	heat	map	for	GSE83452	using	the	DERs.	Red:	upregulated	DERs.	Blue:	downregulated	DERs.	C:	Baseline	time	points;	
D:	1-year	follow-up	time	points.

A

B

C

D
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Table 1. Gene	Ontology	(GO)	and	Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG)	pathway	enrichment	analysis	for	the	
differentially	expressed	RNAs	(DERs).

Category Term Count P-Value Genes
Biology  
Process

GO:0006935~chemotaxis 8 3.110E-04 MAP2K1, CXCL9, AMOT, etc
GO:0006636~unsaturated	fatty	acid	biosynthetic	process 4 4.770E-04 FADS1, SCD, FADS2, etc
GO:0007267~cell-cell	signaling 10 1.513E-03 SH2D1A, ADM, FADS1, etc
GO:0007568~aging 8 1.848E-03 TYMS, ADM, APOD, etc
GO:0007166~cell	surface	receptor	signaling	pathway 10 2.538E-03 MARCO, PRLR, TSPAN3, etc
GO:0055114~oxidation-reduction	process 15 4.070E-03 KDM6A, HSD17B2, PYROXD2, etc
GO:0016337~single	organismal	cell-cell	adhesion 6 4.312E-03 MPZL2, PKHD1, FAT1, etc
GO:0006629~lipid	metabolic	process 7 6.425E-03 APOD, PLIN1, APOF, etc 
GO:0070098~chemokine-mediated	signaling	pathway 5 6.698E-03 TFF2, CXCL9, ACKR3, etc
GO:0032496~response	to	lipopolysaccharide 7 7.895E-03 ADM, DUSP10, CXCL9, etc
GO:0010508~positive	regulation	of	autophagy 4 8.546E-03 RNF152, FOXO1, TRIM22, etc
GO:0035338~long-chain	fatty-acyl-CoA	biosynthetic	process 4 9.779E-03 SCD, FASN, ELOVL6, ACSL5
GO:0006915~apoptotic	process 13 1.716E-02 PEG10, RASSF6, LITAF, etc
GO:0002250~adaptive	immune	response 6 2.033E-02 SH2D1A, EOMES, CD1C, etc
GO:0006959~humoral	immune	response 4 2.223E-02 SH2D1A, BST1, LTF, CD28
GO:0006968~cellular	defense	response 4 2.767E-02 SH2D1A, CXCL9, LBP, etc
GO:0060326~cell	chemotaxis 4 3.124E-02 CXCL9, CCL5, DOCK4, etc
GO:0045766~positive	regulation	of	angiogenesis 5 3.346E-02 ADM, LRG1, RHOB, etc
GO:0032868~response	to	insulin 4 3.374E-02 ADM, INSIG2, FADS1, PCK1
GO:0008203~cholesterol	metabolic	process 4 3.504E-02 INSIG2, APOF, LEPR, ERLIN1
GO:0001889~liver	development 4 4.331E-02 COBL, ONECUT1, DBP, RPGRIP1L
GO:0006954~inflammatory	response 9 4.788E-02 LXN, AOX1, LYZ, etc

KEGG	
Pathway

hsa01212:Fatty	acid	metabolism 6 2.300E-04 FADS1, SCD, FASN, etc
hsa03320:PPAR	signaling	pathway 6 1.090E-03 PLIN1, SCD, FADS2, etc
hsa04620:Toll-like	receptor	signaling	pathway 7 1.479E-03 CTSK, MAP2K1, CXCL9, etc
hsa01040:Biosynthesis of unsaturated fatty acids 4 2.350E-03 FADS1, SCD, FADS2, ELOVL6
hsa04640:Hematopoietic	cell	lineage 6 3.475E-03 CR1, CD2, CD1C, etc
hsa04152:AMPK	signaling	pathway 6 1.465E-02 LEPR, SCD, FASN, etc
hsa04668:TNF	signaling	pathway 5 3.695E-02 MAP2K1, IL15, CREB3L3, etc
hsa00760:Nicotinate	and	nicotinamide	metabolism 3 4.529E-02 BST1, ENPP3, AOX1
hsa04060:Cytokine-cytokine	receptor	interaction 7 4.659E-02 PRLR, LEPR, CXCL9, etc

Figure 2.	Authentication	of	overlapping	DERs	in	the	GSE83452	
datasets	via	Venn	diagrams	software.	Blue	represents	DERs	of	the	
baseline	time	points	group.	Yellow	represents	DERs	of	the	1-year	
follow-up	time	points	group.

Figure 3.	The	lncRNA–miRNA–mRNA	ceRNA	network.	Squares,	
triangles,	and	circles	represent	lncRNA,	miRNA,	and	mRNA,	respec-
tively.	Green	and	red	dots	indicate	the	significantly	downregulated	
DERs	at	both	baseline	and	1-year	follow-up	time	points,	and	the	white	
dots	indicate	DERs	whose	expression	difference	direction	has	changed.
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Table 2. Gene	Ontology	(GO)	and	Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG)	pathway	enrichment	analysis	for	the	
mRNA	in	the	ceRNA	regulatory	network.

Category Term Count P-Value Genes
Biology 
Process

GO:0008610~lipid	biosynthetic	process 12 1.15E-06 PRLR, ADM, ISPD, etc
GO:0008202~steroid	metabolic	process 9 1.26E-05 PRLR, INSIG2, ADM, etc
GO:0006694~steroid	biosynthetic	process 6 9.34E-05 PRLR, ADM, FDPS, etc
GO:0006633~fatty	acid	biosynthetic	process 5 8.64E-04 FADS1, SCD, FASN, etc
GO:0046649~lymphocyte	activation 6 4.38E-03 PRLR, EOMES, IL15, etc
GO:0016053~organic	acid	biosynthetic	process 5 9.79E-03 FADS1, SCD, FASN, etc
GO:0046394~carboxylic	acid	biosynthetic	process 5 9.79E-03 FADS1, SCD, FASN, etc
GO:0045321~leukocyte	activation 6 9.84E-03 PRLR, EOMES, IL15, etc
GO:0006355~regulation	of	transcription,	DNA-dependent 18 1.19E-02 CAMTA2, MAP2K1, LITAF, etc
GO:0030334~regulation	of	cell	migration 5 1.31E-02 MAP2K1, CLIC4, AMOT, etc
GO:0051252~regulation	of	RNA	metabolic	process 18 1.47E-02 CAMTA2, MAP2K1, etc
GO:0007267~cell-cell	signaling 9 1.52E-02 ADM, FADS1, FAT1, etc
GO:0051094~positive	regulation	of	developmental	process 6 1.71E-02 MAP2K1, EOMES, AMOT, etc
GO:0001775~cell	activation 6 1.93E-02 PRLR, EOMES, IL15, etc
GO:0040012~regulation	of	locomotion 5 2.00E-02 MAP2K1, CLIC4, AMOT, etc
GO:0051270~regulation	of	cell	motion 5 2.04E-02 MAP2K1, CLIC4, AMOT, etc
GO:0009719~response	to	endogenous	stimulus 7 2.19E-02 MAP2K1, ADM, FADS1, etc
GO:0006631~fatty	acid	metabolic	process 5 2.21E-02 FADS1, SCD, FASN, etc
GO:0045860~positive	regulation	of	protein	kinase	activity 5 3.23E-02 PRLR, MAP2K1, CD24, etc
GO:0060429~epithelium	development 5 3.42E-02 STX2, MAP2K1, RPGRIP1L, etc
GO:0033674~positive	regulation	of	kinase	activity 5 3.61E-02 PRLR, MAP2K1, CD24, etc
GO:0051347~positive	regulation	of	transferase	activity 5 4.06E-02 PRLR, MAP2K1, CD24, etc
GO:0001568~blood	vessel	development 5 4.33E-02 LEPR, FOXO1, AMOT, etc
GO:0051254~positive	regulation	of	RNA	metabolic	process 7 4.51E-02 CAMTA2, MAP2K1, CSRNP1, etc
GO:0001944~vasculature	development 5 4.66E-02 LEPR, FOXO1, AMOT, etc
GO:0009725~response	to	hormone	stimulus 6 4.80E-02 MAP2K1, ADM, FADS1, etc
GO:0030030~cell	projection	organization 6 4.84E-02 STX2, MAP2K1, ADM, etc
GO:0007243~protein	kinase	cascade 6 4.94E-02 PRLR, MAP2K1, DUSP10, etc

KEGG	
Pathway

hsa01040:Biosynthesis of unsaturated fatty acids 4 2.39E-05 FADS1, SCD, FADS2, ELOVL6
hsa00900:Terpenoid	backbone	biosynthesis 2 8.23E-03 FDPS, MVK
hsa00534:Heparan	sulfate	biosynthesis 2 1.38E-02 EXT1, HS3ST3B1
hsa04910:Insulin	signaling	pathway 3 1.79E-02 MAP2K1, FASN, FOXO1
hsa04060:Cytokine-cytokine	receptor	interaction 4 1.86E-02 PRLR, LEPR, IL15, CXCL10
hsa04010:MAPK	signaling	pathway 4 1.93E-02 MAP2K1, DUSP10, MAP3K13, FGF2
hsa04630:Jak-STAT	signaling	pathway 3 2.21E-02 PRLR, LEPR, IL15
hsa05200:Pathways	in	cancer 4 2.87E-02 MAP2K1, FZD1, FOXO1, FGF2
hsa03320:PPAR	signaling	pathway 2 3.28E-02 SCD, FADS2
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DISCUSSION

The	characteristics	of	NAFLD	include	necrotizing	in-
flammation	and	lipid	accumulation	in	the	liver,	as	well	as	
continuous	improvement	of	living	standards	leading	to	over-
nutrition.	In	addition,	bad	living	habits	lead	to	the	incidence	
of	NAFLD	on	a	global	scale	(27).	The	specific	mechanism	
of	the	transition	from	benign	steatosis	to	steatohepatitis	in	
NAFLD	is	not	fully	understood,	and	there	are	currently	
no	pharmacological	options	for	the	treatment	of	NAFLD.	
Therefore,	the	treatment	of	NASH	mainly	depends	on	life-
style	changes,	such	as	strengthening	exercises,	reducing	
weight,	and	a	light	diet	(28).	Although	current	studies	have	
shown	that	weight	loss	improves	the	histological	characteris-
tics	of	NAFLD,	most	patients	have	not	however	achieved	the	
goal	of	curing	NAFLD.	There	are	some	potentially	valuable	
molecules,	nevertheless,	which	are	currently	being	clini-
cally	evaluated	(29).	For	example,	PNPLA3	(30),	TM6SF2 
(31),	MBOAT7	(32),	and	HSD17B13	(33),	molecules	that	
predispose	an	individual	to	the	spectrum	of	NAFLD-relat-
ed	disease,	have	been	found	to	play	a	role	in	macrophage	
phagocytosis,	 immune	 response,	 oxidative	 stress,	 and	
inflammation,	insulin	signaling,	and	lipid	metabolism	in	
NAFLD	susceptibility	and	progression	(34).	But	there	is	no	
unmet	clinical	need	for	drug	discovery	and	development	for	
patients	with	NAFLD.	Increased	levels	of	toxic	lipids	(free	
fatty	acids	or	free	cholesterol)	can	lead	to	liver	cell	damage	
and	trigger	inflammation	is	the	pathogenesis	of	NAFLD	as	
is	currently	understood.	In	addition,	oxidative	stress,	pro-
inflammatory	chemokines	and	cytokines	have	been	proven	
to	lead	to	liver	inflammation,	which,	in	turn,	leads	to	damage	
and	fibrosis	of	the	liver.	Therefore,	the	identification	of	pro-

Figure 4.	Gene–drug	connection	network.	Squares	represent	drug	molecules,	circles	represent	genes,	and	green	and	red	dots	represent	the	
significantly	downregulated	DERs	at	both	baseline	and	1-year	follow-up	time	points.

inflammatory	cytokines	related	to	lipotoxicity	may	improve	
our	understanding	of	the	pathogenesis	of	NAFLD,	helping	
to	develop	new	pharmacological	methods.

In	this	study,	a	total	of	220	overlapping	DERs	were	
identified	between	the	baseline	and	1-year	follow-up	time	
points.	In	addition,	functional	enrichment	analysis	of	over-
lapping	DERs,	based	on	online	DAVID	analyses,	revealed	
22	significantly	related	GO	biological	processes	and	9	
KEGG	pathways,	with	P <	.05	as	the	cutoff	criteria.	We	
found	that	chemotaxis	(P =	3.110E-04),	unsaturated	fatty	
acid	biosynthetic	process	(P =	4.770E-04),	and	cell-cell	
signaling	(P =	1.513E-03)	were	the	three	most	significant	
pathways	in	GO	biological	processes.	Meanwhile,	fatty	
acid	metabolism	(P =	2.300E-04),	PPAR	signaling	path-
way	(P =	1.090E-03),	and	Toll-like	receptor	signaling	
pathway	(P =	1.479E-03)	were	the	three	most	significant	
pathways	 in	KEGG	signaling	pathways.	Afterwards,	a	
ceRNA	regulatory	network	was	constructed.	The	GO	and	
pathway	enrichment	analyses	indicated	that	the	mRNAs	
of	the	ceRNA	regulatory	network	were	involved	in	various	
important	biological	functions	and	metabolic	pathways	
associated	with	NAFLD,	 including	 lipid	 biosynthetic	
process,	steroid	metabolic	process,	steroid	biosynthetic	
process,	biosynthesis	of	unsaturated	fatty	acids,	 terpe-
noid	backbone	biosynthesis,	heparan	sulfate	biosynthesis,	
Cytokine–cytokine	receptor	interaction,	Insulin	signaling	
pathway,	and	the	pathways	in	cancer.	To	further	under-
stand	the	functional	mechanism	of	the	ceRNA	network,	
a	drug	regulation	gene	network	was	constructed	which	
included	154	gene–drug	connection	pairs.	Subsequently,	
LEPR, CXCL10, and FOXO1	were	investigated	using	the	
PharmGKB	database.	It	was	revealed	that	the	therapeutic	
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effect	of	antipsychotics,	atorvastatin,	valproic	acid,	risperi-
done,	clozapine,	olanzapine,	simvastatin,	and	quetiapine	
were	produced,	thus	possibly	targeting	to	LEPR through 
the	Cytokine–cytokine	receptor	interaction	pathway.	The	
therapeutic	effect	of	Peginterferon	alfa-2a	and	peginter-
feron	alfa-2b	were	produced	by	targeting	CXCL10 through 
the	Cytokine–cytokine	receptor	interaction	pathway.	The	
therapeutic	effect	of	Epirubicin,	cyclophosphamide,	and	
fluorouracil	were	produced	by	targeting	FOXO1 through 
the	Insulin	signaling	pathway	or	the	pathways	in	cancer.

LEPR	is	responsible	for	encoding	the	leptin	receptor	
that	binds	to	leptin	in	target	tissues.	Due	to	its	role	in	regulat-
ing	lipid	metabolism	and	insulin	resistance,	it	is	considered	to	
be	a	candidate	gene	for	NAFLD	and	coronary	atherosclerosis	
(35).	Simultaneously,	An	et	al.	(36)	found	that	LEPR Q223R 
polymorphism	may	lead	to	a	significant	risk	of	NAFLD	
and	coronary	atherosclerosis,	which	is	consistent	with	the	
results	of	this	study.	The	CXC	motif	chemokine	ligand	10	
(CXCL10)	is	a	particularly	important	pro-inflammatory	cy-
tokine	related	to	lipotoxicity,	which	can	recruit	inflammatory	
cells	to	the	site	of	tissue	injury	(37,	38).	Studies	have	shown	
that CXCL10	is	upregulated	in	NAFLD	patients	(39),	and	
revealed that CXCL10	may	be	a	key	molecule	that	contrib-
utes	to	the	transition	from	benign	steatosis	to	steatohepatitis,	
promoting	liver	cell	damage	and	inflammation	(40).	

Our	study	revealed	 that	peginterferon	alfa-2a	and	
peginterferon	alfa-2b	can	downregulate	 the	expression	
of CXCL10,	 suggesting	a	potential	 role	of	CXCL10 in 
the	development	of	 intrahepatic	 inflammation	 through	
the	Cytokine–cytokine	receptor	interaction	pathway,	and	
demonstrated	 that	CXCL10	 is	an	 independent	 risk	fac-
tor	 for	patients	with	NAFLD.	FOXO1	 is	an	 important	
transcriptional	effector.	It	is	widely	expressed	in	various	
types	of	tissues	and	plays	an	important	role	in	the	signaling	
pathway	of	insulin	and	insulin-like	growth	factor	1	(41).	
In	addition,	the	expression	levels	of	most	genes	related	to	
adipocyte	differentiation	are	affected	by	the	coordination	of	
FOXO1	(42).	Yue	Li	et	al.	(43)	conducted	a	comprehensive	
analysis	of	the	relevant	information	about	the	activity	of	
FOXO1	in	lipid	metabolism,	and	found	that	FOXO1 has 
a	significant	inhibitory	effect	on	the	production	of	fibrotic	
effector	cells,	and	pointed	out	that	FOXO1	has	the	potential	
to	become	a	target	for	the	treatment	of	NAFLD,	but	the	
related	mechanism	needs	to	be	further	verified	by	experi-
ments	(44).	L.	Valenti	et	al.	(45)	found	that	FOXO1	may	
affect	 the	susceptibility	of	NAFLD,	and	regulating	the	
level of FOXO1	mRNA	in	order	to	regulate	the	relevant	
cytokines	in	insulin	signaling	to	promote	the	progression	
of	liver	injury.	This	study	found	that	epirubicin,	cyclophos-
phamide,	and	fluorouracil	can	downregulate	the	expres-
sion of FOXO1,	suggesting	that	these	drugs	may	produce	
therapeutic	effect	by	targeting	FOXO1 through the insulin 

signaling	pathway	or	the	pathways	in	cancer.	However,	
further	study	is	necessary	to	validate	this	hypothesis.

CONCLUSION

In	conclusion,	this	study	constructed	and	analyzed	
a	ceRNA	network,	a	network	which	may	provide	some	
evidence	 for	 future	 studies	 focusing	on	 the	molecular	
mechanisms	of	NALFD.	LEPR, CXCL10, and FOXO1 
may	function	as	ceRNAs	to	serve	critical	roles	in	NALFD.	
In	addition,	antipsychotics,	atorvastatin,	valproic	acid,	ris-
peridone,	clozapine,	olanzapine,	simvastatin,	quetiapine,	
peginterferon	alfa-2a,	peginterferon	alfa-2b,	epirubicin,	
cyclophosphamide,	and	fluorouracil	may	produce	thera-
peutic	effect	for	patients	with	NALFD.	
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